Вопрос задан 20.02.2021 в 15:31. Предмет Алгебра. Спрашивает Хитрых Боря.

Найти область определения функции y=квадратный корень из 2 cos 3x -1?  

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Матвеева Руся.
Y = sqrt(2*cos(3x) - 1) -  такая запись?
ОДЗ: подкоренное выражение всегда неотрицательное, косинус всегда лежит на отрезке [-1;1]
2*cos(3x) - 1>=0, cos(3x)>=1/2
-1<=cos(3x)<=1
Общее решение (пересечение): 1/2 <=cos(3x)<=1
cos(3x) >= 1/2
5pi/3 + 2pi*k <= 3x <= 7pi/3 + 2pi*k
5pi/9 + 2pi*k/3 <= x <= 7pi/9 + 2pi*k/3
P.S. На картинке попыталась показать, как получены эти значения

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы найти область определения функции y = √(2cos(3x) - 1), нужно определить значения x, для которых выражение под корнем является неотрицательным или определено.

  1. Выражение под корнем должно быть неотрицательным: 2cos(3x) - 1 ≥ 0

  2. Чтобы найти значения x, удовлетворяющие неравенству, нужно решить его: 2cos(3x) ≥ 1 cos(3x) ≥ 1/2

  3. Для неравенства cos(3x) ≥ 1/2 есть несколько значений x, удовлетворяющих этому условию. Однако, чтобы найти область определения функции, нужно найти наименьший и наибольший x, удовлетворяющие неравенству.

    Неравенство cos(3x) ≥ 1/2 выполняется, когда 3x лежит в интервалах [0, π/3] и [5π/3, 2π]. Это происходит, когда cos(3x) равен 1/2 или больше, что происходит в углах 30°, 60°, 150°, 210°, 300° и 330°.

  4. Разделим полученные интервалы на 3, чтобы найти значения x, для которых функция определена:

    • В первом интервале [0, π/3] значения x могут быть любыми числами в этом интервале.
    • Во втором интервале [π/3, 5π/3] функция не определена, так как cos(3x) < 1/2 для всех значений x в этом интервале.
    • В третьем интервале [5π/3, 2π] значения x могут быть любыми числами в этом интервале.

Таким образом, область определения функции y = √(2cos(3x) - 1) - это интервал [0, π/3] объединенный с интервалом [5π/3, 2π].

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос