
lg(x+√3)+lg(x-√3)=0 log₂(x-2)+log₂(x-3)=1 lg(x²-9)-lg(x-3)=0 log₆(x-1)-log₆(2x-11)=log₆2
log₀·₇log₄(x-5)=0 log²₀₋₅x-log₀₋₅x-2=0

Ответы на вопрос

1) lg(x^2-3)=lg1
x^2-3=1
x=2
2) (x-2)(x-3)=2
x^2-5x+4=0
x1=4
x2=1 x-3<0 не подходит
3) х+3=1
х=-2 не подходит по области определения, решений нет
4) (x-1)/(2x-11)=2
x-1=4x-22
3x=21
x=7
5) log(x-5)=0,7^0=1
x-5=4^1=4
x=9
6) log=t t^2-t-2=0
t1=2 t2=-1
x1=0,5^2=1/4
x2=0.5^(-1)=2



Let's solve each equation one by one:
- lg(x+√3) + lg(x-√3) = 0
Using the property of logarithms, we can rewrite the equation as:
lg((x+√3)(x-√3)) = 0
Simplifying the equation inside the logarithm:
lg(x² - 3) = 0
Converting the logarithmic equation to exponential form:
10^0 = x² - 3
1 = x² - 3
x² = 4
Taking the square root of both sides:
x = ±2
So, the solutions are x = 2 and x = -2.
- log₂(x-2) + log₂(x-3) = 1
Using the property of logarithms, we can combine the logarithms:
log₂((x-2)(x-3)) = 1
Simplifying the equation inside the logarithm:
log₂(x² - 5x + 6) = 1
Converting the logarithmic equation to exponential form:
2^1 = x² - 5x + 6
2 = x² - 5x + 6
Rearranging the equation:
x² - 5x - 4 = 0
Factoring the quadratic equation:
(x - 4)(x + 1) = 0
Setting each factor to zero:
x - 4 = 0 or x + 1 = 0
x = 4 or x = -1
So, the solutions are x = 4 and x = -1.
- lg(x²-9) - lg(x-3) = 0
Using the property of logarithms, we can combine the logarithms:
lg((x²-9)/(x-3)) = 0
Simplifying the equation inside the logarithm:
lg((x+3)(x-3)/(x-3)) = 0
lg(x+3) = 0
Converting the logarithmic equation to exponential form:
10^0 = x + 3
1 = x + 3
x = -2
So, the solution is x = -2.
- log₆(x-1) - log₆(2x-11) = log₆2
Using the property of logarithms, we can combine the logarithms:
log₆((x-1)/(2x-11)) = log₆2
Since the base of the logarithm is the same on both sides, we can equate the expressions inside the logarithms:
(x-1)/(2x-11) = 2
Solving the equation for x:
x - 1 = 4x - 22
3x = 21
x = 7
So, the solution is x = 7.
- log₀·₇log₄(x-5) = 0
The expression log₀·₇ is undefined since the base is zero. Therefore, there is no solution to this equation.
- log²₀₋₅x - log₀₋₅x - 2 = 0
Using the property of logarithms, we can combine the logarithms:
log₀₋₅x² - log₀₋₅x - 2 = 0
Simplifying the equation:
log₀₋₅(x²/x) - 2 = 0
log₀₋₅(x) - 2 = 0
Converting the logarithmic equation to exponential form:
(-5)^(2) = x
25 =


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili