
Вопрос задан 15.02.2021 в 03:02.
Предмет Алгебра.
Спрашивает Дмитриева Елизавета.
Представьте в виде степени: х^3+х^5+х^7/х^-3+х^-5+х^-7


Ответы на вопрос

Отвечает Зиборов Дмитрий.
(x^3+x^5+x^7)/(x^(-3)+x^(-5)+x^(-7))=(x^3+x^5+x^7)/(1/x^3+1/x^5+1/x^7)=x^10



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для представления данного выражения в виде степени, мы можем использовать свойство сложения степеней с одинаковым основанием.
Первый шаг - объединение слагаемых с положительными степенями: x^3 + x^5 + x^7
Второй шаг - объединение слагаемых с отрицательными степенями: 1/x^3 + 1/x^5 + 1/x^7
Теперь мы можем объединить эти два выражения, приведя их к общему знаменателю: (x^3 + x^5 + x^7) / (1/x^3 + 1/x^5 + 1/x^7)
Для объединения этих двух выражений в одну степень, мы можем умножить числитель и знаменатель на x^7: (x^10 + x^12 + x^14) / (x^4 + x^2 + 1)
Таким образом, выражение х^3+х^5+х^7/х^-3+х^-5+х^-7 можно представить в виде степени: (x^10 + x^12 + x^14) / (x^4 + x^2 + 1)


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili