
Вопрос задан 26.10.2020 в 21:43.
Предмет Алгебра.
Спрашивает Лузанова Мария.
найдите НАИБОЛЬШЕЕ n для которого n^4-34n^2+1 положительное ПРОСТОЕ число. ПОЖАЛУЙСТА, СРОЧНО
СЕГОДНЯ НУЖНО

Ответы на вопрос

Отвечает Белоусова Дарья.
n⁴ - 34n² + 1 > 0
Введём замену переменной n² = t, причём t > 0:
t² - 34t + 1 > 0
Приравняем данное квадратное неравенство к нулю и найдём корни:
t² - 34t + 1 = 0
D = b² - 4ac = 1156 - 4 = 1152 = (24√2)²
t₁₂ = (34 ± 24√2)/2 = 17 ± 12√2
Вернёмся к замене:
n² = 17 + 12√2
n = ± (3 + 2√2)
n² = 17 - 12√2
n = ± (3 - 2√2)
Наибольшие корни здесь 3 + 2√2 и 3 - 2√2. Пусть √2 ≈ 1.4, составим неравенство:
3 - 2 · 1.4 < x < 3 + 2 · 1.4
3 - 2.8 < x < 3 + 2.8
0.2 < x < 5.8
Наибольшее положительное простое число - это число 5. Оно делится на себя и на единицу.
Ответ
5


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili