
Вопрос задан 20.10.2020 в 02:02.
Предмет Алгебра.
Спрашивает Топчій Женя.
Числа 1, 2, 3, 4, 5, 6, 7, 8, 9, 16 произвольно делят на три группы так, чтобы в каждой группе было
хотя бы одно число. Затем вычисляют значение среднего арифметического чисел в каждой из групп (для группы из единственного числа среднее арифметическое равно этому числу). а) Могут ли быть одинаковыми два из этих трёх значений средних арифметических в группах из разного количества чисел? б) Могут ли быть одинаковыми все три значения средних арифметических?

Ответы на вопрос

Отвечает Григорко Иванка.
a) Да. Например: 1, 3 ___ 2 ___ 4, 5, 6, 7, 8, 9, 16
s1 = 2 s2 = 2 s3 = 55/7
b) Нет. Допустим, что s1=s2=s3=s, причем в первой группе n1 элементов, а во второй n2. Тогда в третьей группе 10-n1-n2 элементов.
Сумма всех элементов равна 61 = n1*s+n2*s+(10-n1-n2)*s
61=s*(n1+n2+10-n1-n2)
61=s*10 ⇒ s=61/10
Т.к. дробь 61/10 несократимая, а сумма элементов каждой группы, очевидно, целая, то сумма элементов в каждой группе не меньше 61, а число элементов не меньше 10. ⇒ Общее число элементов не меньше 30. Так как у нас всего 10 элементов, получаем противоречие.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili