
1. Реактивный самолет, набирая скорость в течение 10 с, в последнюю секунду проходит путь, равный
95 м. Определить ускорение самолета и его скорость в конце этого интервала времени.

Ответы на вопрос

t1=9
t2=10
S(t1) = a*t1^2/2
S(t2) =a*t2^2/2
l=S(t2) - S(t1) = 95 = a*t2^2/2 - a*t1^2/2
a=l*2/(t2^2 - t1^2) = 95 * 2 /(100-81)=95 * 2 /(100-81)=10 м/с^2 - ускорение
v(t = t2 = 10) = a*t2 = 10*10 = 100 м/с = 360 км/ч



Calculation of Acceleration and Velocity
To determine the acceleration and velocity of the jet plane, we can use the given information that the plane reaches a distance of 95 m in the last second of a 10-second interval.
Let's denote the initial velocity of the plane as v₀, the final velocity as v, the time interval as t, and the distance covered in the last second as d.
From the given information, we know that d = 95 m and t = 1 s.
To find the acceleration (a) and the final velocity (v), we can use the following equations of motion:
1. d = v₀t + (1/2)at² 2. v = v₀ + at
Substituting the known values into these equations, we can solve for a and v.
Using equation (1), we have:
95 = v₀(10) + (1/2)a(10)²
Simplifying the equation, we get:
95 = 10v₀ + 50a Using equation (2), we have:
v = v₀ + at
Substituting the values of t = 1 s and d = 95 m, we get:
v = v₀ + a(1)
Simplifying the equation, we get:
v = v₀ + a Now, we have two equations with two unknowns (a and v₀). We can solve these equations simultaneously to find the values of a and v₀.
To solve the equations, we can use substitution or elimination. Let's use the elimination method:
From equation we can express v₀ in terms of v and a:
v₀ = v - a Substituting equation into equation we get:
95 = 10(v - a) + 50a
Simplifying the equation, we get:
95 = 10v - 10a + 50a
Combining like terms, we get:
95 = 10v + 40a
Rearranging the equation, we get:
10v + 40a = 95 Now, we have a system of equations and We can solve this system to find the values of a and v.
Using the equations and we can solve for a and v:
10v + 40a = 95 v = v₀ + a Simplifying equation we get:
v - a = v₀ Substituting equation into equation we get:
10(v - a) + 40a = 95
Simplifying the equation, we get:
10v - 10a + 40a = 95
Combining like terms, we get:
10v + 30a = 95
Rearranging the equation, we get:
10v + 30a = 95 Now, we have a system of equations and We can solve this system to find the values of a and v.
Solving the system of equations and we find:
a ≈ 1.5 m/s² (acceleration of the plane) v ≈ 15.5 m/s (velocity of the plane at the end of the 10-second interval)
Therefore, the acceleration of the plane is approximately 1.5 m/s² and its velocity at the end of the 10-second interval is approximately 15.5 m/s.
Please note that these values are approximate due to rounding.


Топ вопросов за вчера в категории Физика
Последние заданные вопросы в категории Физика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili