Вопрос задан 29.04.2019 в 13:55. Предмет Физика. Спрашивает Книшик Тетяна.

Мяч бросают горизонтально с высоты 15 м. При какой начальной скорости дальность полета мяча в 3

раза больше начальной высоты? Под каким углом к горизонту движется мяч перед ударом о землю?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Лебедев Владислав.
H = gt^2/2; t^2 = 2h/g = 2*15/10 = 3; t = √3;
l = V0t; l = 3h = 3*15 = 45;
V0 = l/t = 45/√3 = 15√3;
tgB = Vy/Vx = gt/V0 = (10*√3)/(15√3) = 2/3; B ≈ 34
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Calculation of Initial Velocity and Angle of Projectile Motion

To determine the initial velocity and angle of the projectile, we can use the equations of motion for projectile motion.

Let's denote the initial height as h0 (15 m in this case) and the horizontal distance traveled as L (3 times the initial height).

The equation for the horizontal distance traveled in projectile motion is given by:

L = v0 * t * cos(theta)

where: - v0 is the initial velocity of the projectile, - t is the time of flight, and - theta is the angle of projection with respect to the horizontal.

The equation for the vertical displacement is given by:

h = h0 + v0 * t * sin(theta) - (1/2) * g * t^2

where: - h is the final height (0 in this case, as the projectile hits the ground), - g is the acceleration due to gravity (approximately 9.8 m/s^2).

We can solve these equations simultaneously to find the initial velocity and angle of projection.

Solving for Initial Velocity

Since the horizontal distance traveled is 3 times the initial height, we have:

L = 3 * h0

Substituting this into the equation for horizontal distance, we get:

3 * h0 = v0 * t * cos(theta)

Simplifying, we have:

v0 * t * cos(theta) = 3 * h0

Similarly, substituting the final height as 0, we have:

0 = h0 + v0 * t * sin(theta) - (1/2) * g * t^2

Simplifying, we have:

h0 + v0 * t * sin(theta) - (1/2) * g * t^2 = 0

Now, we can solve these equations simultaneously to find the initial velocity and angle of projection.

Calculation Steps

1. Substitute the given values: - h0 = 15 m - L = 3 * h0 = 3 * 15 m = 45 m - g = 9.8 m/s^2

2. Solve the equation 3 * h0 = v0 * t * cos(theta) for t * cos(theta): - t * cos(theta) = (3 * h0) / v0

3. Substitute this value into the equation h0 + v0 * t * sin(theta) - (1/2) * g * t^2 = 0: - h0 + v0 * t * sin(theta) - (1/2) * g * t^2 = 0 - 15 + v0 * ((3 * h0) / v0) * sin(theta) - (1/2) * g * ((3 * h0) / v0)^2 = 0

4. Simplify the equation: - 15 + 3 * h0 * sin(theta) - (1/2) * g * (3 * h0 / v0)^2 = 0

5. Solve the equation for v0: - v0 = sqrt((3 * h0 * g) / (2 * sin(theta)))

6. Substitute the given value of h0 = 15 m and solve for v0: - v0 = sqrt((3 * 15 * 9.8) / (2 * sin(theta)))

7. Solve the equation 3 * h0 = v0 * t * cos(theta) for t: - t = (3 * h0) / (v0 * cos(theta))

8. Substitute the given value of h0 = 15 m and solve for t: - t = (3 * 15) / (v0 * cos(theta))

9. Substitute the values of v0 and t into the equation h0 + v0 * t * sin(theta) - (1/2) * g * t^2 = 0 and solve for theta.

Please note that the exact value of theta cannot be determined without additional information. However, we can calculate the range of possible values for theta.

Calculation Results

Using the given values, we can calculate the initial velocity and the range of possible angles of projection.

- Initial velocity (v0): - v0 = sqrt((3 * 15 * 9.8) / (2 * sin(theta)))

- Range of possible angles of projection (theta): - Solve the equation h0 + v0 * t * sin(theta) - (1/2) * g * t^2 = 0 for theta using the calculated value of v0 and the range of possible values for t.

Please provide additional information or specific values for theta if you would like a more precise answer.

0 0

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос