
Шар массой m=2 кг и радиусом R=05 м вращается с частотой n=2с в степени -1 вокруг оси, проходящей
через его центр. Какую работу надо совершить, чтобы увеличить угловую скорость шара вдвое?

Ответы на вопрос

А = 35,3 Дж



Calculation of Work to Double the Angular Velocity of a Rotating Sphere
To calculate the work required to double the angular velocity of a rotating sphere, we can use the formula for rotational kinetic energy:
Rotational Kinetic Energy (K) = (1/2) * I * ω^2
Where: - K is the rotational kinetic energy - I is the moment of inertia of the sphere - ω is the angular velocity of the sphere
To double the angular velocity, we need to find the work done to increase the rotational kinetic energy from K to 2K.
Moment of Inertia of a Sphere
The moment of inertia of a solid sphere rotating about its central axis is given by the formula:
I = (2/5) * m * R^2
Where: - I is the moment of inertia - m is the mass of the sphere - R is the radius of the sphere
Given that the mass of the sphere is 2 kg and the radius is 0.5 m, we can calculate the moment of inertia.
I = (2/5) * 2 kg * (0.5 m)^2
Calculating the moment of inertia gives us:
I = 0.4 kg * m^2
Calculation of Work
To calculate the work required to double the angular velocity, we need to find the initial and final angular velocities.
Given that the initial angular velocity is n = 2 s^-1, we can calculate the initial rotational kinetic energy (K_initial) using the formula:
K_initial = (1/2) * I * ω_initial^2
Substituting the values, we get:
K_initial = (1/2) * 0.4 kg * m^2 * (2 s^-1)^2
Simplifying the equation gives us:
K_initial = 0.8 kg * m^2 * s^-2
To double the angular velocity, the final angular velocity (ω_final) will be 2n = 4 s^-1.
We can calculate the final rotational kinetic energy (K_final) using the formula:
K_final = (1/2) * I * ω_final^2
Substituting the values, we get:
K_final = (1/2) * 0.4 kg * m^2 * (4 s^-1)^2
Simplifying the equation gives us:
K_final = 3.2 kg * m^2 * s^-2
The work done to increase the rotational kinetic energy from K_initial to K_final is given by the difference:
Work = K_final - K_initial
Substituting the values, we get:
Work = 3.2 kg * m^2 * s^-2 - 0.8 kg * m^2 * s^-2
Simplifying the equation gives us:
Work = 2.4 kg * m^2 * s^-2
Therefore, the work required to double the angular velocity of the rotating sphere is 2.4 kg * m^2 * s^-2.
Please note that the calculations provided are based on the given information and assumptions.


Топ вопросов за вчера в категории Физика
Последние заданные вопросы в категории Физика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili