Вопрос задан 17.02.2019 в 02:20. Предмет Физика. Спрашивает Галкин Женя.

Ребята,даю 100 баллов! На мраморном полу стоит цилиндрическая мраморная колонна высотой в 3,6 м.

Вычисли давление колонны на пол. Принять g=9,8Н/кг. Используй таблицу плотностей веществ.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Хайрисламов Дима.
P(плотность)=2700кг/м^3
h=3,6м
g=9,8 м/с^2
P(давление)=p*g*h=95256 Пa= 95,3кПа
Ответ: 95,3кПа
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Calculation of Pressure

To calculate the pressure exerted by the cylindrical marble column on the floor, we need to use the formula:

Pressure = Force / Area

In this case, the force is the weight of the column, and the area is the contact area between the column and the floor.

To find the weight of the column, we can use the formula:

Weight = Mass x Gravity

The mass of the column can be calculated using the formula:

Mass = Density x Volume

The volume of the column can be calculated using the formula for the volume of a cylinder:

Volume = π x (radius^2) x height

Given: - Height of the column = 3.6 m - Density of marble (from the table of densities) = 2,700 kg/m^3 - Acceleration due to gravity (g) = 9.8 N/kg

Let's calculate the pressure exerted by the column on the floor.

Calculation Steps:

1. Calculate the volume of the column using the given height: - Radius of the column is not provided, so we cannot calculate the exact volume. We will assume a radius of 1 meter for the purpose of this calculation. - Volume = π x (1^2) x 3.6 m^3

2. Calculate the mass of the column using the density and volume: - Mass = Density x Volume

3. Calculate the weight of the column using the mass and acceleration due to gravity: - Weight = Mass x Gravity

4. Calculate the contact area between the column and the floor: - Since the column is assumed to be cylindrical, the contact area is the same as the base area of the column. - Area = π x (radius^2)

5. Calculate the pressure exerted by the column on the floor using the weight and contact area: - Pressure = Weight / Area

Let's perform the calculations.

Calculation:

1. Calculate the volume of the column: - Volume = π x (1^2) x 3.6 m^3 - Volume = 3.6π m^3

2. Calculate the mass of the column: - Mass = Density x Volume - Mass = 2,700 kg/m^3 x 3.6π m^3

3. Calculate the weight of the column: - Weight = Mass x Gravity - Weight = (2,700 kg/m^3 x 3.6π m^3) x 9.8 N/kg

4. Calculate the contact area between the column and the floor: - Area = π x (1^2) - Area = π m^2

5. Calculate the pressure exerted by the column on the floor: - Pressure = Weight / Area - Pressure = [(2,700 kg/m^3 x 3.6π m^3) x 9.8 N/kg] / π m^2

Now, let's calculate the values.

Calculation Results:

- Volume of the column: 3.6π m^3 - Mass of the column: 2,700 kg/m^3 x 3.6π m^3 - Weight of the column: (2,700 kg/m^3 x 3.6π m^3) x 9.8 N/kg - Contact area between the column and the floor: π m^2 - Pressure exerted by the column on the floor: [(2,700 kg/m^3 x 3.6π m^3) x 9.8 N/kg] / π m^2

Please note that the exact values for the volume, mass, weight, and pressure depend on the actual radius of the column, which is not provided in the question. The calculations above assume a radius of 1 meter for illustrative purposes.

0 0

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос