
Ребята,даю 100 баллов! На мраморном полу стоит цилиндрическая мраморная колонна высотой в 3,6 м.
Вычисли давление колонны на пол. Принять g=9,8Н/кг. Используй таблицу плотностей веществ.

Ответы на вопрос

h=3,6м
g=9,8 м/с^2
P(давление)=p*g*h=95256 Пa= 95,3кПа
Ответ: 95,3кПа



Calculation of Pressure
To calculate the pressure exerted by the cylindrical marble column on the floor, we need to use the formula:
Pressure = Force / Area
In this case, the force is the weight of the column, and the area is the contact area between the column and the floor.
To find the weight of the column, we can use the formula:
Weight = Mass x Gravity
The mass of the column can be calculated using the formula:
Mass = Density x Volume
The volume of the column can be calculated using the formula for the volume of a cylinder:
Volume = π x (radius^2) x height
Given: - Height of the column = 3.6 m - Density of marble (from the table of densities) = 2,700 kg/m^3 - Acceleration due to gravity (g) = 9.8 N/kg
Let's calculate the pressure exerted by the column on the floor.
Calculation Steps:
1. Calculate the volume of the column using the given height: - Radius of the column is not provided, so we cannot calculate the exact volume. We will assume a radius of 1 meter for the purpose of this calculation. - Volume = π x (1^2) x 3.6 m^3
2. Calculate the mass of the column using the density and volume: - Mass = Density x Volume
3. Calculate the weight of the column using the mass and acceleration due to gravity: - Weight = Mass x Gravity
4. Calculate the contact area between the column and the floor: - Since the column is assumed to be cylindrical, the contact area is the same as the base area of the column. - Area = π x (radius^2)
5. Calculate the pressure exerted by the column on the floor using the weight and contact area: - Pressure = Weight / Area
Let's perform the calculations.
Calculation:
1. Calculate the volume of the column: - Volume = π x (1^2) x 3.6 m^3 - Volume = 3.6π m^3
2. Calculate the mass of the column: - Mass = Density x Volume - Mass = 2,700 kg/m^3 x 3.6π m^3
3. Calculate the weight of the column: - Weight = Mass x Gravity - Weight = (2,700 kg/m^3 x 3.6π m^3) x 9.8 N/kg
4. Calculate the contact area between the column and the floor: - Area = π x (1^2) - Area = π m^2
5. Calculate the pressure exerted by the column on the floor: - Pressure = Weight / Area - Pressure = [(2,700 kg/m^3 x 3.6π m^3) x 9.8 N/kg] / π m^2
Now, let's calculate the values.
Calculation Results:
- Volume of the column: 3.6π m^3 - Mass of the column: 2,700 kg/m^3 x 3.6π m^3 - Weight of the column: (2,700 kg/m^3 x 3.6π m^3) x 9.8 N/kg - Contact area between the column and the floor: π m^2 - Pressure exerted by the column on the floor: [(2,700 kg/m^3 x 3.6π m^3) x 9.8 N/kg] / π m^2
Please note that the exact values for the volume, mass, weight, and pressure depend on the actual radius of the column, which is not provided in the question. The calculations above assume a radius of 1 meter for illustrative purposes.


Топ вопросов за вчера в категории Физика
Последние заданные вопросы в категории Физика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili