
На первой половине пути автомобиль движется со скоростью в 4 раза большей, чем на второй.
Определите скорости v1, v2 автомобиля на каждом участке, если средняя скорость автомобиля =32км/ч.

Ответы на вопрос

V1+V2=64км/ч
4x+x=64км/ч
5x=64км/ч
Скорость в первой половине: 51,2км/ч
Скорость в второй половине:12,8км/ч



Problem Analysis
We are given that a car travels at a speed four times greater on the first half of the journey compared to the second half. We need to determine the speeds of the car on each segment if the average speed of the car is 32 km/h.Solution
Let's assume the speed of the car on the first half of the journey is v1 and the speed on the second half is v2. We are also given that the average speed of the car is 32 km/h.To solve this problem, we can use the formula for average speed:
Average Speed = Total Distance / Total Time
Since the car travels the same distance on both halves of the journey, the total distance is the same for both segments. Therefore, we can write:
Total Distance = Distance on First Half + Distance on Second Half
Let's assume the distance on each half is d. Therefore, the total distance is 2d.
Now, let's calculate the time taken for each segment:
Time on First Half = Distance on First Half / Speed on First Half
Time on Second Half = Distance on Second Half / Speed on Second Half
Since the car travels at a speed four times greater on the first half compared to the second half, we can write:
Speed on First Half = 4 * Speed on Second Half
Substituting the values in the time equations, we get:
Time on First Half = d / v1
Time on Second Half = d / v2
Now, let's substitute the values in the average speed equation:
32 = (2d) / (d/v1 + d/v2)
Simplifying the equation, we get:
32 = 2 / (1/v1 + 1/v2)
To solve this equation, we need to find the values of v1 and v2 that satisfy the equation.
Solution Steps
1. Substitute the given values into the equation: 32 = 2 / (1/v1 + 1/v2) 2. Simplify the equation. 3. Solve the equation to find the values of v1 and v2.Let's solve the equation to find the values of v1 and v2.
Solution
Substituting the given values into the equation: 32 = 2 / (1/v1 + 1/v2), we get:32 = 2 / (1/v1 + 1/v2)
Simplifying the equation, we get:
32 = 2v1v2 / (v1 + v2)
Multiplying both sides of the equation by (v1 + v2), we get:
32(v1 + v2) = 2v1v2
Expanding the equation, we get:
32v1 + 32v2 = 2v1v2
Rearranging the equation, we get:
2v1v2 - 32v1 - 32v2 = 0
Factoring the equation, we get:
2(v1 - 16)(v2 - 16) = 0
From this equation, we can see that either v1 - 16 = 0 or v2 - 16 = 0.
If v1 - 16 = 0, then v1 = 16.
If v2 - 16 = 0, then v2 = 16.
Therefore, the possible values for v1 and v2 are 16.
So, the speeds of the car on each segment are 16 km/h.
Answer
The speed of the car on the first half of the journey is 16 km/h, and the speed on the second half is also 16 km/h.

Топ вопросов за вчера в категории Физика
Последние заданные вопросы в категории Физика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili