
Два тела движутся согласно законам х₁=-4 + 2t +t² и х₂=6 - 8t + t². Чему ровна относительная
скорость тела в момент встречи?

Ответы на вопрос

В задании не указано как движутся тела, буду считать, что они движутся навстречу друг другу.
Скорости тел - это производные от пути
V1 = x1' = 2 + 2t
V2 = x2' = -8 +2t
Момент встречи найдем из уравнения:
-4 + 2t +t² = 6 - 8t + t²
2t + 8t = 6 + 4
10t = 10
t = 1 сек
V1(1) = 2+2*1 = 4
V2(1) = -8+2*1 = -6
Разные знаки говорят о направлении скоростей.
Относительная скорость V = V1 - V2 = 4 - (-6) = 10



Calculating Relative Velocity at the Moment of Encounter
To calculate the relative velocity of the two bodies at the moment of encounter, we can find the derivative of the position functions with respect to time and then evaluate it at the time of encounter.
The position functions for the two bodies are given as: - Body 1: \( x_1 = -4 + 2t + t^2 \) - Body 2: \( x_2 = 6 - 8t + t^2 \)
Finding the Derivatives of the Position Functions
Let's find the derivatives of the position functions with respect to time to obtain the velocities of the two bodies.
The derivative of \( x_1 \) with respect to time \( t \) is: \[ v_1 = \frac{dx_1}{dt} = 2 + 2t \]
The derivative of \( x_2 \) with respect to time \( t \) is: \[ v_2 = \frac{dx_2}{dt} = -8 + 2t \]
Calculating the Relative Velocity at the Moment of Encounter
To find the relative velocity at the moment of encounter, we need to find the time \( t \) when the two bodies meet. This occurs when their positions are equal, so we can set \( x_1 = x_2 \) and solve for \( t \).
\[ -4 + 2t + t^2 = 6 - 8t + t^2 \] \[ 2t + 4t = 6 + 4 \] \[ 6t = 10 \] \[ t = \frac{10}{6} = \frac{5}{3} \]
Now that we have the time of encounter, we can find the relative velocity by evaluating the difference in velocities at this time.
The velocity of body 1 at \( t = \frac{5}{3} \) is: \[ v_1 = 2 + 2\left(\frac{5}{3}\right) = \frac{16}{3} \]
The velocity of body 2 at \( t = \frac{5}{3} \) is: \[ v_2 = -8 + 2\left(\frac{5}{3}\right) = \frac{2}{3} \]
Relative Velocity at the Moment of Encounter
The relative velocity of the two bodies at the moment of encounter is the difference between their velocities at that time: \[ v_{\text{relative}} = v_2 - v_1 = \frac{2}{3} - \frac{16}{3} = -\frac{14}{3} \]Therefore, the relative velocity of the two bodies at the moment of encounter is -14/3 units of distance per unit of time.


Топ вопросов за вчера в категории Физика
Последние заданные вопросы в категории Физика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili