
Определить расстояние между двумя зарядами 3мкКл и 5мкКл, находящимися в янтаре, если они
взаимодействуют с силой 95 H

Ответы на вопрос

F=k*q1*q2/e*R^2
R=sqrt(k*q1*q2/F*e)=sqrt(9*10^9*3*10^-6*5*10^-6/95*2,8)=2,24*10^-2 м



Для определения расстояния между двумя зарядами, взаимодействующими с определенной силой, можно использовать закон Кулона. Закон Кулона описывает взаимодействие между двумя точечными зарядами и выражается следующим образом:
\[ F = \frac{{k \cdot |q_1 \cdot q_2|}}{{r^2}} \]
где: - \( F \) - сила взаимодействия между зарядами, - \( k \) - постоянная Кулона (\( 8.9875 \times 10^9 \, \text{Н} \cdot \text{м}^2/\text{Кл}^2 \)), - \( q_1 \) и \( q_2 \) - величины зарядов, - \( r \) - расстояние между зарядами.
В данном случае известно, что сила взаимодействия между зарядами равна \( F = 95 \, \text{Н} \), а величины зарядов равны \( q_1 = 3 \times 10^{-6} \, \text{Кл} \) и \( q_2 = 5 \times 10^{-6} \, \text{Кл} \). Мы хотим найти расстояние \( r \).
Используем формулу и решим уравнение относительно \( r \):
\[ r = \sqrt{\frac{{k \cdot |q_1 \cdot q_2|}}{{F}}} \]
Подставим известные значения:
\[ r = \sqrt{\frac{{8.9875 \times 10^9 \, \text{Н} \cdot \text{м}^2/\text{Кл}^2 \cdot |3 \times 10^{-6} \, \text{Кл} \cdot 5 \times 10^{-6} \, \text{Кл}|}}{{95 \, \text{Н}}}} \]
Решив это уравнение, вы получите расстояние между зарядами \( r \). Не забывайте использовать соответствующие единицы измерения для получения правильного ответа.


Топ вопросов за вчера в категории Физика







Последние заданные вопросы в категории Физика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili