Вопрос задан 05.08.2018 в 09:23. Предмет Физика. Спрашивает Васюк Ульяна.

С высоты 900 м летчик заметил корабль, шедший встречным курсом с постоянной скоростью. Пикируя

точно на цель под углом 60º к горизонту, летчик сбрасывает бомбу и поражает цель. Какова была скорость корабля, если в момент освобождения бомбы самолет пикировал со скоростью 700 км/ч?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кудряшов Андрей.
Скорость корабля кажется 140 или 150

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

In this problem, a pilot notices a ship from an altitude of 900 meters. The pilot dives towards the target at a 60-degree angle to the horizon and drops a bomb. We need to determine the speed of the ship if the plane was diving at a speed of 700 km/h when the bomb was released.

Solution

To solve this problem, we can use trigonometry and the concept of relative velocity.

Let's assume the speed of the ship is V km/h.

When the pilot drops the bomb, the horizontal component of the plane's velocity is equal to the horizontal component of the ship's velocity. This is because the pilot is diving directly towards the ship.

Using trigonometry, we can find the horizontal component of the plane's velocity:

Horizontal component of plane's velocity = Plane's velocity * cos(60 degrees)

Given that the plane's velocity is 700 km/h and the angle is 60 degrees, we can calculate the horizontal component of the plane's velocity.

Next, we need to find the time it takes for the bomb to reach the ship. Since the plane is diving directly towards the ship, the vertical component of the plane's velocity is equal to the vertical component of the ship's velocity.

Using trigonometry, we can find the vertical component of the plane's velocity:

Vertical component of plane's velocity = Plane's velocity * sin(60 degrees)

The time it takes for the bomb to reach the ship can be calculated using the formula:

Time = Distance / Vertical component of plane's velocity

The distance can be calculated using the formula:

Distance = Altitude of the plane - Altitude of the ship

Given that the altitude of the plane is 900 meters, we can calculate the distance.

Finally, we can calculate the speed of the ship using the formula:

Speed of the ship = Distance / Time

Let's calculate the speed of the ship using the given values.

Calculation

Altitude of the plane = 900 meters

Plane's velocity = 700 km/h

Angle = 60 degrees

Horizontal component of plane's velocity = 700 km/h * cos(60 degrees)

Vertical component of plane's velocity = 700 km/h * sin(60 degrees)

Distance = Altitude of the plane - Altitude of the ship

Time = Distance / Vertical component of plane's velocity

Speed of the ship = Distance / Time

Answer

The speed of the ship, given that the plane was diving at a speed of 700 km/h when the bomb was released, can be calculated using the above formulas. However, the necessary values for the calculations are not provided in the question. Please provide the altitude of the ship and the angle at which the bomb was released so that we can calculate the speed of the ship accurately.

0 0

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос