Вопрос задан 19.11.2023 в 13:33. Предмет Физика. Спрашивает Троян Юлия.

СРОЧНО ПОМОГИТЕ ПОЖАЛУЙСТА 4) Проволочный сопротивлением виток радиусом 0,1 м и 2 Ом находится в

однородном магнитном поле с индукцией 0,2 Тл. Линии магнитной индукции перпендикулярны плоскости витка. Какой заряд протечет по витку, если: а) магнитное поле исчезнет; б) направление линий магнитной индукции изменить на обратное; в) повернуть виток на угол 30;г) виток перевернуть с одной стороны на другую?​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Мушкет Владислав.

Ответ:

100,56

Объяснение:

❤️‍❤️‍❤️

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Calculation of Charge Flow in a Wire Loop in a Magnetic Field

To calculate the charge flow in a wire loop in a magnetic field, we can use Faraday's law of electromagnetic induction. According to this law, the induced electromotive force (emf) in a closed loop is equal to the rate of change of magnetic flux through the loop.

The formula for the induced emf is given by:

emf = -N * dΦ/dt

Where: - emf is the induced electromotive force - N is the number of turns in the wire loop - dΦ/dt is the rate of change of magnetic flux through the loop

In this case, we are given the following parameters: - Number of turns, N = 1 - Radius of the wire loop, r = 0.1 m - Resistance of the wire loop, R = 2 Ω - Magnetic field induction, B = 0.2 T

Let's calculate the charge flow for each given scenario:

a) When the magnetic field disappears: If the magnetic field disappears, the rate of change of magnetic flux through the loop will be zero. Therefore, the induced emf and the charge flow will also be zero.

b) When the direction of magnetic field lines is reversed: If the direction of the magnetic field lines is reversed, the rate of change of magnetic flux through the loop will be negative. Therefore, the induced emf and the charge flow will also be negative. However, the magnitude of the charge flow will remain the same.

c) When the wire loop is rotated by an angle of 30 degrees: When the wire loop is rotated by an angle of 30 degrees, the rate of change of magnetic flux through the loop will change. To calculate the new charge flow, we need to determine the new rate of change of magnetic flux.

The rate of change of magnetic flux through a loop is given by:

dΦ/dt = B * A * cos(θ)

Where: - A is the area of the loop - θ is the angle between the magnetic field lines and the normal to the loop's plane

In this case, the area of the loop remains the same, but the angle changes to 30 degrees. Therefore, we can calculate the new rate of change of magnetic flux and the corresponding charge flow.

d) When the wire loop is flipped from one side to the other: If the wire loop is flipped from one side to the other, the rate of change of magnetic flux through the loop will not change. Therefore, the induced emf and the charge flow will remain the same.

Now, let's calculate the charge flow for scenario c) when the wire loop is rotated by an angle of 30 degrees:

The rate of change of magnetic flux through the loop can be calculated as follows:

dΦ/dt = B * A * cos(θ)

Where: - B is the magnetic field induction - A is the area of the loop - θ is the angle between the magnetic field lines and the normal to the loop's plane

The area of the loop can be calculated using the formula for the area of a circle:

A = π * r^2

Where: - r is the radius of the wire loop

In this case, the radius of the wire loop is given as 0.1 m. Therefore, the area of the loop is:

A = π * (0.1)^2 = 0.0314 m^2

Substituting the given values into the formula for the rate of change of magnetic flux, we get:

dΦ/dt = (0.2 T) * (0.0314 m^2) * cos(30°)

Calculating this expression, we find:

dΦ/dt ≈ 0.0343 T·m^2/s

Finally, we can calculate the charge flow using the formula for the induced emf:

emf = -N * dΦ/dt

Substituting the given values, we get:

emf = -(1) * (0.0343 T·m^2/s) ≈ -0.0343 V

Since the resistance of the wire loop is given as 2 Ω, we can use Ohm's law to calculate the charge flow:

emf = I * R

Solving for the current, we get:

I = emf / R = (-0.0343 V) / (2 Ω) ≈ -0.0172 A

Therefore, the charge flow in the wire loop, when it is rotated by an angle of 30 degrees, is approximately -0.0172 Coulombs.

Please note that the charge flow is negative because the induced emf and current flow in the wire loop are in the opposite direction to the original current flow.

I hope this helps! Let me know if you have any further questions.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос