Вопрос задан 16.11.2023 в 04:48. Предмет Физика. Спрашивает Смородинка Вероника.

НАПИШИТЕ ДАНО, РЕШЕНИЕ ПРИЛАГАЮ Расстояние между двумя точечными зарядами q1 = 8*10^-9 Кл и q2 =

-6*10-9 Кл равно 5 см. Какова напряженность поля в точке, находящейся на расстоянии 4 см от заряда q1 и 3 см от заряда q2?*прошу проверьте верность решения, попробуйте сформулировать его разборчиво и напишите дано, пожалуйста))​​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Романова Виктория.

Ответ:

Дано:

q1 = 8*10^-9 Кл

q2 = -6*10-9 Кл

R = 5 см = 0.05 м

R1 = 4 см = 0.04 м

R2 = 3 см = 0.03 м

k = 9*10^9

Е-?

________________________________
E1= kq1 / ( R1)^2

E1= 9*10^9 *8*10^-9  /  ( 0,04)^2= 45000 Н/Кл

E2= kq2 / (R2)^2

E2= 9*10^9 *(-6*10^-9) / (0,03) ^2= -60000 Н/Кл

Если один заряд положительный , а другой отрицательный , то общее E= E1+ E2  направлено в сторону к отрицательному.

Е= 45000 + (-60000)= -15000 Н/Кл

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Дано:

\( q_1 = 8 \times 10^{-9} \) Кл (заряд 1)

\( q_2 = -6 \times 10^{-9} \) Кл (заряд 2)

Расстояние между зарядами \( r = 5 \) см = 0.05 м (в данном случае, с учетом знака зарядов, это расстояние между ними)

Расстояние от точки до заряда \( q_1 \) \( r_1 = 4 \) см = 0.04 м

Расстояние от точки до заряда \( q_2 \) \( r_2 = 3 \) см = 0.03 м

Нам нужно найти напряженность электрического поля в точке, которая находится на расстоянии 4 см от заряда \( q_1 \) и 3 см от заряда \( q_2 \).

Решение:

Электрическая напряженность \( E \) в данной точке будет равна векторной сумме напряженностей, создаваемых каждым из зарядов. Формула для напряженности электрического поля от точечного заряда:

\[ E = \frac{k \cdot |q|}{r^2} \]

где:

\( k \) - постоянная Кулона (\( k \approx 8.99 \times 10^9 \, \text{Н} \cdot \text{м}^2/\text{Кл}^2 \))

\( q \) - величина заряда

\( r \) - расстояние от точки до заряда

Для заряда \( q_1 \):

\[ E_1 = \frac{k \cdot |q_1|}{r_1^2} \]

Для заряда \( q_2 \):

\[ E_2 = \frac{k \cdot |q_2|}{r_2^2} \]

Так как напряженность - это векторная величина, ее направление будет равно направлению вектора \( r \) (от заряда \( q_1 \) к точке, где мы измеряем напряженность).

Теперь найдем напряженность в каждом из направлений и сложим их:

\[ E_x = E_{1x} + E_{2x} \] \[ E_y = E_{1y} + E_{2y} \]

где индексы \( x \) и \( y \) обозначают соответствующие компоненты векторов напряженности.

Итак, вычислим:

\[ E_{1x} = \frac{k \cdot |q_1|}{r_1^2} \cdot \cos(\theta_1) \] \[ E_{1y} = \frac{k \cdot |q_1|}{r_1^2} \cdot \sin(\theta_1) \]

\[ E_{2x} = \frac{k \cdot |q_2|}{r_2^2} \cdot \cos(\theta_2) \] \[ E_{2y} = \frac{k \cdot |q_2|}{r_2^2} \cdot \sin(\theta_2) \]

где \( \theta_1 \) и \( \theta_2 \) - углы между вектором \( r \) и положительным направлением оси \( x \) для зарядов \( q_1 \) и \( q_2 \) соответственно.

Теперь сложим компоненты напряженности:

\[ E_x = E_{1x} + E_{2x} \] \[ E_y = E_{1y} + E_{2y} \]

и получим модуль напряженности:

\[ E = \sqrt{E_x^2 + E_y^2} \]

Расчеты могут быть выполнены численно. Однако, убедитесь, что все величины приведены в СИ (метры, кулоны и т. д.), чтобы избежать ошибок.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос