
В однорідне магнітне поле з індукцією В=10мТл перпендикуля- рно до ліній індукції влітає електрон,
кінетична енергія якого Wk = 30кеВ. Обчислити радіус кривизни траєкторії руху електронів у полі.

Ответы на вопрос

To calculate the radius of curvature of the electron's trajectory in a uniform magnetic field, we can use the formula for the centripetal force experienced by a charged particle moving in a magnetic field.
Formula:
The formula for the centripetal force is given by:F = (m*v^2) / r
where: - F is the centripetal force - m is the mass of the electron - v is the velocity of the electron - r is the radius of curvature of the trajectory
In this case, the centripetal force is provided by the magnetic force acting on the electron:
F = q*v*B
where: - q is the charge of the electron - B is the magnetic field strength
By equating the two expressions for the centripetal force, we can solve for the radius of curvature.
Solution:
Given: - Induction of the magnetic field (B) = 10 mT = 10 * 10^-3 T - Kinetic energy of the electron (Wk) = 30 keV = 30 * 10^3 eVTo calculate the radius of curvature, we need to find the velocity of the electron. We can use the kinetic energy to find the velocity using the equation:
Wk = (1/2) * m * v^2
Solving for v:
v = sqrt((2 * Wk) / m)
The mass of an electron (m) is approximately 9.10938356 × 10^-31 kg.
Now, we can substitute the values of q, v, and B into the equation for the centripetal force:
q * v * B = (m * v^2) / r
Simplifying the equation, we get:
r = (m * v) / (q * B)
Let's calculate the radius of curvature using the given values:
- q = charge of an electron = -1.602176634 × 10^-19 C - m = mass of an electron = 9.10938356 × 10^-31 kg - B = 10 * 10^-3 T - v = sqrt((2 * 30 * 10^3 * 1.602176634 × 10^-19) / (9.10938356 × 10^-31))
Calculating the value of v, we find:
v ≈ 5.427 * 10^6 m/s
Now, substituting the values into the equation for the radius of curvature:
r = (9.10938356 × 10^-31 * 5.427 * 10^6) / (1.602176634 × 10^-19 * 10 * 10^-3)
Calculating the value of r, we find:
r ≈ 3.187 * 10^-2 m
Therefore, the radius of curvature of the electron's trajectory in the given magnetic field is approximately 3.187 * 10^-2 meters.
Please note that the calculations provided are based on the given information and assumptions.


Похожие вопросы
Топ вопросов за вчера в категории Физика
Последние заданные вопросы в категории Физика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili