Вопрос задан 02.11.2023 в 06:17. Предмет Физика. Спрашивает Ворон Андрей.

1.определите работу, совершаеиую при передаче тепла среде после изотермического сжатия 700 Дж

​2.изменение внутренней энергии газа при 300 Дж в адиабатическом процессе
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Tokhmetov Timur.

Ответ:

Для описания этих изменений вводят функцию состояния - внутреннюю энергию U и две функции перехода - теплоту Q и работу A. Математическая формулировка первого закона:

dU = Q - A (дифференциальная форма) (2.1)

U = Q - A (интегральная форма) (2.2)

Буква в уравнении (2.1) отражает тот факт, что Q и A - функции перехода и их бесконечно малое изменение не является полным дифференциалом.

В уравнениях (2.1) и (2.2) знаки теплоты и работы выбраны следующим образом. Теплота считается положительной, если она передается системе. Напротив, работа считается положительной, если она совершается системой над окружающей средой.

Существуют разные виды работы: механическая, электрическая, магнитная, поверхностная и др. Бесконечно малую работу любого вида можно представить как произведение обобщенной силы на приращение обобщенной координаты, например:

Aмех = p. dV; Aэл = . dе; Aпов = . dW (2.3)

( - электрический потенциал, e - заряд, - поверхностное натяжение, W - площадь поверхности). С учетом (2.3), дифференциальное выражение первого закона можно представить в виде:

dU = Q - p. dV Aнемех (2.4)

В дальнейшем изложении немеханическими видами работы мы будем, по умолчанию, пренебрегать.

Механическую работу, производимую при расширении против внешнего давления pex, рассчитывают по формуле:

A = (2.5)

Если процесс расширения обратим, то внешнее давление отличается от давления системы (например, газа) на бесконечно малую величину: pex = pin - dp и в формулу (2.5) можно подставлять давление самой системы, которое определяется по уравнению состояния.

Проще всего рассчитывать работу, совершаемую идеальным газом, для которого известно уравнение состояния p = nRT / V (табл. 1).

Таблица 1. Работа идеального газа в некоторых процессах расширения V1 V2:

Процесс

A

Расширение в вакуум

0

Расширение против постоянного внешнего давления p

p (V2-V1)

Изотермическое обратимое расширение

nRT ln(V2/V1)

Адиабатическое обратимое расширение

nCV(T1-T2)

При обратимом процессе совершаемая работа максимальна.

Теплота может переходить в систему при нагревании. Для расчета теплоты используют понятие теплоемкости, которая определяется следующим образом:

C = (2.6)

Если нагревание происходит при постоянном объеме или давлении, то теплоемкость обозначают соответствующим нижним индексом:

CV = ; Cp = . (2.7)

Из определения (2.6) следует, что конечную теплоту, полученную системой при нагревании, можно рассчитать как интеграл:

Q = (2.8)

Теплоемкость - экспериментально измеряемая экстенсивная величина. В термодинамических таблицах приведены значения теплоемкости при 298 К и коэффициенты, описывающие ее зависимость от температуры. Для некоторых веществ теплоемкость можно также оценить теоретически методами статистической термодинамики (гл. 12). Так, при комнатной температуре для одноатомных идеальных газов мольная теплоемкость CV = 3/2 R, для двухатомных газов CV = 5/2 R.

Теплоемкость определяется через теплоту, переданную системе, однако ее можно связать и с изменением внутренней энергии. Так, при постоянном объеме механическая работа не совершается и теплота равна изменению внутренней энергии: QV = dU, поэтому

CV = . (2.9)

При постоянном давлении теплота равна изменению другой функции состояния, которую называют энтальпией:

Qp = dU + pdV = d (U+pV) = dH, (2.10)

где H = U+pV - энтальпия системы. Из (2.10) следует, что теплоемкость Cp определяет зависимость энтальпии от температуры.

Cp = . (2.11)

Из соотношения между внутренней энергией и энтальпией следует, что для моля идеального газа

Cp - CV = R. (2.12)

Внутреннюю энергию можно рассматривать, как функцию температуры и объема:

(2.13)

Для идеального газа экспериментально обнаружено, что внутренняя энергия не зависит от объема, , откуда можно получить калорическое уравнение состояния:

dU = CV dT,

(2.14)

В изотермических процессах с участием идеального газа внутренняя энергия не изменяется, и работа расширения происходит только за счет поглощаемой теплоты.

Возможен и совсем иной процесс. Если в течение процесса отсутствует теплообмен с окружающей средой ( Q = 0), то такой процесс называют адиабатическим. В адиабатическом процессе работа может совершаться только за счет убыли внутренней энергии. Работа обратимого адиабатического расширения идеального газа:

A = - U = nCV (T1-T2) (2.15)

(n - число молей, CV - мольная теплоемкость). Эту работу можно также выразить через начальные и конечные давление и объем:

A = (2.16)

где = Cp / CV.

При обратимом адиабатическом расширении идеального газа давление и объем связаны соотношением (уравнением адиабаты):

pV = const. (2.17)

В уравнении (2.17) важны два момента: во-первых, это уравнение процесса, а не уравнение состояния; во-вторых, оно справедливо только для обратимого адиабатического процесса. Это же уравнение можно записать в эквивалентном виде:

TV -1 = const, (2.18)

T p1- = const. (2.19)

Объяснение:

помогла как смогла

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

1. Определение работы, совершаемой при передаче тепла среде после изотермического сжатия 700 Дж:

Изотермическое сжатие - это процесс, при котором температура газа остается постоянной. В данном случае, работа, совершаемая при передаче тепла среде после изотермического сжатия, связана с изменением объема газа и определяется по формуле:

W = PΔV

где: W - работа, совершаемая при сжатии (в данном случае); P - давление газа; ΔV - изменение объема газа.

Для изотермического процесса в идеальном газе, закон Бойля-Мариотта гласит, что PV = константа, где P - давление, V - объем.

Изотермическое сжатие означает, что температура газа остается постоянной, и, следовательно, P1V1 = P2V2, где P1 и V1 - начальное давление и объем, а P2 и V2 - конечное давление и объем.

Чтобы определить работу, сначала найдем начальное и конечное состояния газа. Зная, что после изотермического сжатия 700 Дж тепла передано среде, это изменение теплоты можно использовать для вычисления работы.

Q = W

Теплота, переданная среде, равна работе, совершенной над газом:

Q = -700 Дж (отрицательное значение, так как тепло передается среде).

Теперь найдем работу:

W = -700 Дж

2. Изменение внутренней энергии газа при 300 Дж в адиабатическом процессе:

Адиабатический процесс - это процесс, при котором ни тепло, ни масса не обмениваются между системой и окружающей средой. В этом случае, изменение внутренней энергии (ΔU) газа связано с работой, совершаемой над газом. Изменение внутренней энергии можно выразить как:

ΔU = Q - W

где: ΔU - изменение внутренней энергии; Q - передача тепла; W - работа, совершаемая над газом.

Поскольку это адиабатический процесс, Q = 0 (ничего не передается в виде тепла), и у нас есть только работа:

ΔU = -W

Теперь мы знаем, что изменение внутренней энергии равно -300 Дж (отрицательное значение, так как работа совершается над газом):

ΔU = -300 Дж

Из этого следует, что работа, совершаемая над газом в адиабатическом процессе, составляет 300 Дж.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос