
Свет падает на дифракционную решетку. Определите расстояние между максимумом второго порядка и
центральным максимумом, если длина волны падающего света равна 300нм. Расстояние от экрана до решетки 2 м. Решетка имеет 100штр/мм.

Ответы на вопрос

Для решетки
d*sina= л*k k=2
при малых углах sina=tga=h/L L=2 м
d*h/L= л*2
h= 2*л*L/d=2*300*10^-9*2/10^-5=12*10^-2=12 см



Calculation of Distance between Second Order Maximum and Central Maximum
To calculate the distance between the second-order maximum and the central maximum when light falls on a diffraction grating, we can use the formula:
d * sin(θ) = m * λ
Where: - d is the spacing between the slits in the diffraction grating (in this case, given as 100 lines/mm, which is equivalent to 0.01 mm or 0.00001 m). - θ is the angle between the incident light and the normal to the grating. - m is the order of the maximum (in this case, the second order). - λ is the wavelength of the incident light (given as 300 nm, which is equivalent to 0.0003 mm or 0.0000003 m).
To find the distance between the second-order maximum and the central maximum, we need to find the angle θ. We can use the following formula to calculate the angle:
tan(θ) = y / L
Where: - y is the distance between the central maximum and the second-order maximum. - L is the distance between the diffraction grating and the screen (given as 2 m).
Let's calculate the distance between the second-order maximum and the central maximum step by step:
1. Convert the wavelength of the incident light to meters: 300 nm = 0.0000003 m. 2. Convert the spacing between the slits in the diffraction grating to meters: 100 lines/mm = 0.01 mm = 0.00001 m. 3. Calculate the angle θ using the formula: tan(θ) = y / L. 4. Rearrange the formula to solve for y: y = L * tan(θ). 5. Substitute the values of L (2 m) and θ into the equation to calculate y. 6. Calculate the distance between the second-order maximum and the central maximum by subtracting the value of y from the total distance between the diffraction grating and the screen (2 m).
Let's perform the calculations:
1. The wavelength of the incident light is 0.0000003 m. 2. The spacing between the slits in the diffraction grating is 0.00001 m. 3. Using the formula tan(θ) = y / L, we can rearrange it to θ = arctan(y / L). 4. Substituting the values of L (2 m) and θ into the equation, we can calculate y. 5. The distance between the second-order maximum and the central maximum is given by the equation: distance = L - y.
Let's calculate the values:
Using the given values: - λ = 0.0000003 m - d = 0.00001 m - L = 2 m
We can calculate θ using the formula tan(θ) = y / L:
θ = arctan(y / L)
Now, let's calculate y:
y = L * tan(θ)
Finally, we can calculate the distance between the second-order maximum and the central maximum:
distance = L - y
Please note that we need to calculate the value of θ first in order to proceed with the calculations.


Топ вопросов за вчера в категории Физика
Последние заданные вопросы в категории Физика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili