Вопрос задан 27.09.2023 в 23:46. Предмет Физика. Спрашивает Гарбуз Ксения.

Вращающийся момент, под действием которого вращается шар массой 12 кг и диаметром 40 см вокруг оси,

проходящей через его центр, равен 1,5 Н·м. Определить угловое ускорение и угловую скорость шара через 5 с после начала вращения.​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Косов Илья.

Ответ:

Объяснение:

m=12 кг    d=0.4 м   M=1.5 Н*м   Δt=5 c    ε=?    ω=?

===

M=J*ε

Для шара J=0.4*m*R²

R=d/2

ε=M/J=M/(0.1*m*d²)=1.5/(0.1*12*0.4²≈7.8 рад/с²

ωo=0

ε=Δω/Δt  --->ω=ε*Δt=7.8*5=39 рад/с

==================================

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для определения углового ускорения и угловой скорости шара, можно воспользоваться уравнением движения для вращательного движения. Уравнение связывает момент инерции, угловое ускорение и вращающий момент. Формула для этого уравнения следующая:

M=IαM = I \cdot \alpha

где:

  • MM - вращающий момент (1,5 Н·м),
  • II - момент инерции шара,
  • α\alpha - угловое ускорение.

Момент инерции шара можно вычислить для сферы, используя следующую формулу:

I=25mr2I = \frac{2}{5} \cdot m \cdot r^2

где:

  • mm - масса шара (12 кг),
  • rr - радиус шара (половина диаметра, то есть 0,2 м).

Подставляем известные значения:

I=2512кг(0,2м)2=0,48кгм2I = \frac{2}{5} \cdot 12 \, \text{кг} \cdot (0,2 \, \text{м})^2 = 0,48 \, \text{кг} \cdot \text{м}^2

Теперь мы можем найти угловое ускорение α\alpha:

1,5Н\cdotpм=0,48кгм2α1,5 \, \text{Н·м} = 0,48 \, \text{кг} \cdot \text{м}^2 \cdot \alpha

α=1,5Н\cdotpм0,48кгм2=3,125рад/с2\alpha = \frac{1,5 \, \text{Н·м}}{0,48 \, \text{кг} \cdot \text{м}^2} = 3,125 \, \text{рад/с}^2

Теперь мы можем определить угловую скорость ω\omega через 5 с после начала вращения, используя следующее уравнение:

ω=ω0+αt\omega = \omega_0 + \alpha \cdot t

где:

  • ω\omega - угловая скорость через время tt,
  • ω0\omega_0 - начальная угловая скорость (при начале вращения она равна нулю).

В данном случае, t=5сt = 5 \, \text{с} и ω0=0\omega_0 = 0. Подставляем значения:

ω=0+3,125рад/с25с=15,625рад/с\omega = 0 + 3,125 \, \text{рад/с}^2 \cdot 5 \, \text{с} = 15,625 \, \text{рад/с}

Итак, угловое ускорение шара равно 3,125рад/с23,125 \, \text{рад/с}^2, а угловая скорость через 5 с после начала вращения составляет 15,625рад/с15,625 \, \text{рад/с}.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос