Вопрос задан 23.07.2023 в 15:05. Предмет Физика. Спрашивает Ульман Эдгар.

Медный закрытый сосуд массой 1,5 кг содержит 10 кг льда при температуре -10˚С. В сосуд впускают

водяной пар при температуре 100˚С,при этом в сосуде устанавливается температура 35˚С. Чему равна масса пара, введённого в сосуд? Удельная теплоёмкость льда равна 2,1*1000 Дж/(кг*К); удельная теплоёмкость меди – 380 Дж/(кг*К).
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Жуйкова Римма.

Дано:

\displaystyle m_{Cu}=1.5 кг;

\displaystyle m_i=10 кг;

t₀=-10 °C;

t₁=100 °C;

t₂=35 °C;

\displaystyle c_i=2100 Дж/(кг*К);

\displaystyle c_{Cu}=380 Дж/(кг*К);

\displaystyle c_B=4200 Дж/(кг*К);

\displaystyle \lambda_i=3.3*10^5 Дж/кг;

L=2.3*10⁶ Дж/кг;

________________

Найти: \displaystyle m_s

Решение:

Рассмотрим более подробно, какие процессы происходят в результате теплообмена между паром и сосудом. Тепло в данном случае идет на:

- нагревание цилиндра;

-нагревание льда до температуры плавления;

-плавление льда;

-нагревание жидкой воды;

Тепло выделяется за счет:

-конденсации пара;

-остывания сконденсировавшейся воды;

Таким образом, отданное количество теплоты:

\displaystyle Q_o=m_sL+c_Bm_s(t_1-t_2)=2.3*10^6*m_s+4200*m_s*65=\\=2.573*10^6 m_s

Полученное:

Q_p=c_{Cu}m_{Cu}(t_2-t_0)+c_im_i(t_p-t_0)+m_i\lambda_i+c_Bm_i(t_2-t_p)=\\=380*1.5*(35-(-10))+2100*10*(0-(-10))+10*3.3*10^5+\\+4200*10*(35-0)=25650+210000+3.3*10^6+1.47*10^6\approx5*10^6 Дж

Из уравнения теплового баланса:

\displaystyle Q_o=Q_p

2.573*10^6m_s=5*10^6 => m_s=1.94 кг

Ответ: 1,94 кг.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи воспользуемся законом сохранения энергии. Вначале найдем тепловую энергию, необходимую для нагревания льда до 35˚С, а затем найдем массу водяного пара, который был введен в сосуд.

  1. Найдем тепловую энергию, необходимую для нагревания льда до 35˚С:

Масса льда, m_ice = 10 кг Температура льда, T_initial = -10˚С Температура нагревания льда, T_final = 35˚С Удельная теплоемкость льда, c_ice = 2,1 * 1000 Дж/(кг*К)

Тепловая энергия, необходимая для нагревания льда: Q_ice = m_ice * c_ice * (T_final - T_initial)

Q_ice = 10 кг * 2,1 * 1000 Дж/(кгК) * (35˚С - (-10˚С)) Q_ice = 10 кг * 2,1 * 1000 Дж/(кгК) * 45˚С Q_ice = 94500 кДж

  1. Теперь найдем массу водяного пара, который был введен в сосуд. По закону сохранения энергии, тепловая энергия, которая пошла на нагревание льда, равна тепловой энергии, выделившейся при конденсации пара.

Масса пара, m_vapor Удельная теплоемкость меди, c_copper = 380 Дж/(кг*К) Изменение температуры меди, ΔT_copper = T_final - T_initial

Тепловая энергия, выделившаяся при конденсации пара: Q_vapor = m_vapor * c_copper * ΔT_copper

Так как медь находится в закрытом сосуде, то масса меди и льда остается постоянной: m_copper = 1,5 кг (медь)

Суммарная тепловая энергия остается постоянной, то есть: Q_ice = Q_vapor

Приравниваем выражения для Q_ice и Q_vapor: m_ice * c_ice * (T_final - T_initial) = m_vapor * c_copper * ΔT_copper

Теперь можем найти m_vapor:

m_vapor = (m_ice * c_ice * (T_final - T_initial)) / (c_copper * ΔT_copper)

m_vapor = (10 кг * 2,1 * 1000 Дж/(кгК) * 45˚С) / (380 Дж/(кгК) * (35˚С - (-10˚С)))

m_vapor = 94500 кДж / 380 Дж/(кг*К) * 45˚С

m_vapor ≈ 5,92 кг

Таким образом, масса водяного пара, введенного в сосуд, составляет около 5,92 кг.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос