Вопрос задан 30.06.2023 в 07:18. Предмет Физика. Спрашивает Ширманов Руслан.

Тело скользит равномерно по наклонной плоскости с углом наклона 300. Определить коэффициент трения

между телом и плоскостью.(50б)​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Гудко Виктория.

Ответ:

0.58

Объяснение:

α=30   μ=?

===

m*g*sinα=μ*N=μ*m*g*cosα

μ=sinα/cosα=tg30≈0.58

================================

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для определения коэффициента трения между телом и наклонной плоскостью, мы можем использовать второй закон Ньютона и уравнение равномерного движения вдоль плоскости.

Пусть:

  • m - масса тела
  • g - ускорение свободного падения (приближенно 9,81 м/с² на Земле)
  • θ - угол наклона плоскости (в радианах)
  • N - нормальная сила (сила, перпендикулярная наклонной плоскости)
  • F_трения - сила трения

Второй закон Ньютона гласит:

F_параллель = m * a

где F_параллель - компонента силы массы, направленная вдоль наклонной плоскости, а "a" - ускорение, которое равно ускорению свободного падения умноженному на синус угла наклона плоскости:

a = g * sin(θ)

Также у нас есть сила нормального давления (N), которая равна проекции силы массы на нормаль к плоскости:

N = m * g * cos(θ)

Коэффициент трения (μ) связан с силой трения следующим образом:

F_трения = μ * N

Теперь мы можем объединить все эти уравнения:

F_параллель = F_трения

m * g * sin(θ) = μ * m * g * cos(θ)

Используя это уравнение, мы можем определить коэффициент трения (μ):

μ = tan(θ)

В данном случае, угол наклона плоскости (θ) равен 30 градусам, что приближенно равно 0,524 радианам.

Таким образом, коэффициент трения между телом и наклонной плоскостью равен:

μ = tan(0,524) ≈ 0,577

Ответ: Коэффициент трения между телом и наклонной плоскостью составляет приблизительно 0,577.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос