
Соотношение катетов прямоугольного треугольника 3: 4, гипотенуза 30 см. Найдите площадь
треугольника. Дам 30 баллов помогите как можно быстрее

Ответы на вопрос

Ответ: 96 см^2 ( 96 см в квадрате)
Объяснение:
Один катет 3 Х, другой 4 Х ... по т Пифагора ... (3 Х) ^2 + (4 Х) ^2 = 20^2 ... 9 Х^2 + 16 Х^2 = 900 ... 25 Х^2 = 900 ... Х^2 = 36 ... Х = 6
один катет 3 Х будет ... 3 * 6 = 18 см
катет 4 Х будет 4 * 6 = 24
площадь - перемножаем катеты и делим на 2 ... (18 * 24) : 2 = 216



Для нахождения площади прямоугольного треугольника с заданными соотношениями катетов и гипотенузой, мы можем воспользоваться следующей формулой:
Площадь треугольника = (Половина произведения длин катетов)
В данном случае, соотношение катетов 3:4, и гипотенуза равна 30 см. Пусть один из катетов равен 3x, а другой - 4x, где x - некоторое положительное число.
Зная, что гипотенуза равна 30 см, мы можем использовать теорему Пифагора:
(3x)^2 + (4x)^2 = 30^2
9x^2 + 16x^2 = 900
25x^2 = 900
Теперь найдем значение x:
x^2 = 900 / 25 x^2 = 36 x = √36 x = 6
Теперь мы можем найти длины катетов:
Первый катет = 3x = 3 * 6 = 18 см Второй катет = 4x = 4 * 6 = 24 см
Теперь мы можем найти площадь треугольника:
Площадь = (1/2) * (первый катет) * (второй катет) = (1/2) * 18 * 24 = 216 квадратных сантиметров.
Таким образом, площадь прямоугольного треугольника равна 216 квадратным сантиметрам. Вы получаете 30 баллов за это решение!


Похожие вопросы
Топ вопросов за вчера в категории Физика
Последние заданные вопросы в категории Физика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili