
Материальная точка массой m = 2 г совершает гармонические колебания. В некоторый момент времени
смещение точки x = 5 см, скорость v = 20 см/с, ускорение a = 80 см/с2. Найдите круговую частоту 0, период Т, фазу колебания в заданный момент времени, а также амплитуду колебаний xm и полную энергию Е колеблющейся точки.

Ответы на вопрос

Ответ:
Ответ : круговая частота = 4 рад/сек, период = π/2 = 1,57 сек, фаза колебаний в заданный момент времени = 45°, амплитуда = 7,07 (5·√2) см, полная энергия 80 мкДж.




Given Information
We are given the following information about a harmonic oscillator: - Mass of the point: m = 2 g - Displacement of the point: x = 5 cm - Velocity of the point: v = 20 cm/s - Acceleration of the point: a = 80 cm/s^2We need to find the following: - Angular frequency: ω - Period: T - Phase of oscillation at the given moment - Amplitude of oscillation: xm - Total energy of the oscillating point: E
Calculating Angular Frequency (ω)
The angular frequency (ω) of a harmonic oscillator can be calculated using the formula:ω = √(k/m)
where k is the spring constant and m is the mass of the point.
Since the spring constant is not given, we need to find it using the given information. The spring constant can be calculated using the formula:
k = m * a
Substituting the given values, we have:
k = 2 g * 80 cm/s^2
Converting the mass to kg and the acceleration to m/s^2:
k = 0.002 kg * 0.8 m/s^2
Now we can calculate the angular frequency:
ω = √(0.002 kg * 0.8 m/s^2 / 0.002 kg) = √(0.8 m/s^2) = 0.8944 rad/s.
Calculating Period (T)
The period (T) of a harmonic oscillator can be calculated using the formula:T = 2π/ω
Substituting the value of ω we calculated earlier:
T = 2π/0.8944 rad/s = 7.024 s.
Calculating Phase of Oscillation
The phase of oscillation at a given moment can be calculated using the formula:φ = arctan(v/(ωx))
Substituting the given values:
φ = arctan(20 cm/s / (0.8944 rad/s * 5 cm))
Converting the velocity and displacement to m/s and m respectively:
φ = arctan(0.2 m/s / (0.8944 rad/s * 0.05 m))
Now we can calculate the phase:
φ ≈ arctan(4.472) ≈ 1.329 rad.
Calculating Amplitude of Oscillation (xm)
The amplitude of oscillation (xm) can be calculated using the formula:xm = √(x^2 + (v/ω)^2)
Substituting the given values:
xm = √((5 cm)^2 + (20 cm/s / 0.8944 rad/s)^2)
Converting the displacement and velocity to m and m/s respectively:
xm = √((0.05 m)^2 + (0.2 m/s / 0.8944 rad/s)^2)
Now we can calculate the amplitude:
xm ≈ √(0.0025 + 0.0448) ≈ 0.215 m.
Calculating Total Energy of the Oscillating Point (E)
The total energy of the oscillating point can be calculated using the formula:E = (1/2) * k * xm^2
Substituting the values of k and xm we calculated earlier:
E = (1/2) * (0.002 kg * 0.8 m/s^2) * (0.215 m)^2
Now we can calculate the total energy:
E ≈ 4.36 * 10^-5 J.
Summary
Based on the given information, we have calculated the following: - Angular frequency: ω = 0.8944 rad/s - Period: T = 7.024 s - Phase of oscillation at the given moment: φ ≈ 1.329 rad - Amplitude of oscillation: xm ≈ 0.215 m - Total energy of the oscillating point: E ≈ 4.36 * 10^-5 J.Please note that these calculations assume ideal conditions for a simple harmonic oscillator and may not account for any external factors or damping effects.


Похожие вопросы
Топ вопросов за вчера в категории Физика
Последние заданные вопросы в категории Физика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili