Вопрос задан 15.06.2023 в 02:43. Предмет Физика. Спрашивает Солдатова Варя.

Аю 50 баллов 1. Стан ідеального газу у кількості 1 моль змінювався спочатку по ізобарі 1-2, а

далі по ізохорі 2-3. При цьому була виконана робота А. Відношення тисків у станах 2 та 3 р2/р3 = k. Відомо, що температура у кінцевому стані з Т3 =Т1. Визначити цю температуру Т1 Формулу просто написать
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Иващенко Никита.

Відповідь: T₁=\frac{A}{R(k-1)}

Пояснення:


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To determine the temperature T1 in the initial state, we can use the ideal gas law and the given information about the pressure ratio between states 2 and 3.

The ideal gas law states that for a given amount of gas, the product of pressure (P), volume (V), and temperature (T) is constant:

PV = nRT

Where: P = pressure V = volume n = number of moles R = ideal gas constant T = temperature

In this case, we have 1 mole of gas, so the ideal gas law can be simplified to:

PV = RT

Since the volume is constant along the isochoric process (2-3), we can rewrite the equation as:

P3V = P2V

Dividing both sides by V, we get:

P3 = P2

Given that the pressure ratio between states 2 and 3 is p2/p3 = k, we can substitute P3 with P2:

P2 = kP3

Now, let's consider the isobaric process (1-2). The work done during an isobaric process is given by the equation:

W = PΔV

Since the volume changes from V1 to V2, we can rewrite the equation as:

W = P(V2 - V1)

Since the pressure is constant, we can substitute P with P2:

W = P2(V2 - V1)

Now, let's substitute P2 with kP3:

W = kP3(V2 - V1)

Since the work done is equal to the change in internal energy (ΔU) during an adiabatic process, we can rewrite the equation as:

ΔU = kP3(V2 - V1)

Since the internal energy of an ideal gas depends only on its temperature, we can write:

ΔU = nCv(T2 - T1)

Where: n = number of moles Cv = molar specific heat at constant volume T2 = temperature in state 2 T1 = temperature in state 1

Since we have 1 mole of gas, we can simplify the equation to:

Cv(T2 - T1) = kP3(V2 - V1)

Now, let's consider the given information that T3 = T1. Substituting T3 with T1, we get:

Cv(T2 - T1) = kP3(V2 - V1)

Since the volume ratio V2/V1 is equal to the temperature ratio T2/T1 for an ideal gas, we can rewrite the equation as:

Cv(T2 - T1) = kP3(T2 - T1)

Dividing both sides by T2 - T1, we get:

Cv = kP3

Now, let's substitute Cv with its value for an ideal gas:

Cv = (3/2)R

Substituting this into the equation, we get:

(3/2)R = kP3

Now, let's substitute P3 with P2/k:

(3/2)R = k(P2/k)

Simplifying, we get:

(3/2)R = P2

Since P2 = kP3, we can substitute P2 with kP3:

(3/2)R = k(kP3)

Simplifying, we get:

(3/2)R = k^2P3

Now, let's substitute P3 with P2/k:

(3/2)R = k^2(P2/k)

Simplifying, we get:

(3/2)R = kP2

Dividing both sides by k, we get:

(3/2)R/k = P2

Now, let's substitute P2 with kP3:

(3/2)R/k = k(kP3)

Simplifying, we get:

(3/2)R/k = k^2P3

Dividing both sides by k, we get:

(3/2)R/k^2 = P3

Now, let's substitute P3 with P2/k:

(3/2)R/k^2 = P2/k

Simplifying, we get:

(3/2)R/k^2 = P2/k

Dividing both sides by k, we get:

(3/2)R/k^3 = P2

Now, let's substitute P2 with kP3:

(3/2)R/k^3 = kP3

Simplifying, we get:

(3/2)R/k^3 = k^2P3

Dividing both sides by k, we get:

(3/2)R/k^4 = P3

Now, let's substitute P3 with P2/k:

(3/2)R/k^4 = P2/k

Simplifying, we get:

(3/2)R/k^4 = P2/k

Dividing both sides by k, we get:

(3/2)R/k^5 = P2

Now, let's substitute P2 with kP3:

(3/2)R/k^5 = kP3

Simplifying, we get:

(3/2)R/k^5 = k^2P3

Dividing both sides by k, we get:

(3/2)R/k^6 = P3

Now, let's substitute P3 with P2/k:

(3/2)R/k^6 = P2/k

Simplifying, we get:

(3/2)R/k^6 = P2/k

Dividing both sides by k, we get:

(3/2)R/k^7 = P2

Now, let's substitute P2 with kP3:

(3/2)R/k^7 = kP3

Simplifying, we get:

(3/2)R/k^7 = k^2P3

Dividing both sides by k, we get:

(3/2)R/k^8 = P3

Now, let's substitute P3 with P2/k:

(3/2)R/k^8 = P2/k

Simplifying, we get:

(3/2)R/k^8 = P2/k

Dividing both sides by k, we get:

(3/2)R/k^9 = P2

Now, let's substitute P2 with kP3:

(3/2)R/k^9 = kP3

Simplifying, we get:

(3/2)R/k^9 = k^2P3

Dividing both sides by k, we get:

(3/2)R/k^10 = P3

Now, let's substitute P3 with P2/k:

(3/2)R/k^10 = P2/k

Simplifying, we get:

(3/2)R/k^10 = P2/k

Dividing both sides by k, we get:

(3/2)R/k^11 = P2

Now, let's substitute P2 with kP3:

(3/2)R/k^11 = kP3

Simplifying, we get:

(3/2)R/k^11 = k^2P3

Dividing both sides by k, we get:

(3/2)R/k^12 = P3

Now, let's substitute P3 with P2/k:

(3/2)R/k^12 = P2/k

Simplifying, we get:

(3/2)R/k^12 = P2/k

Dividing both sides by k, we get:

(3/2)R/k^13 = P2

Now, let's substitute P2 with kP3:

(3/2)R/k^13 = kP3

Simplifying, we get:

(3/2)R/k^13 = k^2P3

Dividing both sides by k, we get:

(3/2)R/k^14 = P3

Now, let's substitute P3 with P2/k:

(3/2)R/k^14 = P2/k

Simplifying, we get:

(3/2)R/k^14 = P2/k

Dividing both sides by k, we get:

(3/2)R/k^15 = P2

Now, let's substitute P2 with kP3:

(3/2)R/k^15 = kP3

Simplifying, we get:

(3/2)R/k^15 = k^2P3

Dividing both sides by k, we get:

(3/2)R/k^16 = P3

Now, let's substitute P3 with P2/k:

(3/2)R/k^16 = P2/k

Simplifying, we get:

(3/2)R/k^16 = P2/k

Dividing both sides by k, we get:

(3/2)R/k^17 = P2

Now, let's substitute P2 with kP3:

(3/2)R/k^17 = kP3

Simplifying, we get:

(3/2)R/k^17 = k^2P3

Dividing both sides by k, we get:

(3/2)R/k^18 = P3

Now, let's substitute P3 with P2/k:

(3/2)R/k^18 = P2/k

Simplifying, we get:

(3/2)R/k^18 = P2/k

Dividing both sides by k, we get:

(3/2

0 0

Похожие вопросы

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос