Вопрос задан 12.06.2020 в 20:15. Предмет Математика. Спрашивает Степаненко Влад.

Lim x-0 (2x-4)*(x-1)(x+2) lim x-2 (5x^3-6x^2+x-5) lim x-5 x-5/x^2-25

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Лукин Никита.
\displaystyle \lim_{x \to 0} (2x-4)(x-1)(x+2) =(2\cdot 0 -4)(0-1)(0+2)=8\\\\\lim_{x \to 2} (5x^3-6x^2+x-5)=(5\cdot 2^3-6\cdot2^2+2-5)=40-24-3=13

(Т.к. полиномиальные функции непрерывны в \mathbb R)

Для всех x\ne 5, выполняется:

\displaystyle  \frac{x-5}{x^2-25}= \frac{x-5}{(x+5)(x-5)}= \frac{1}{x+5}

Следовательно,

\displaystyle  \lim_{x \to 5}  \frac{x-5}{x^2-25}=\lim_{x \to 5}  \frac{1}{x+5}= \frac{1}{5+5}= \frac{1}{10}

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос