
Шар пересечен плоскостью на расстоянии 4 от центра найдите радиус сечения если радиус шара равен 5


Ответы на вопрос




Finding the Radius of the Intersection of a Sphere and a Plane
To find the radius of the intersection of a sphere and a plane, we need to consider the properties of both the sphere and the plane. Let's break down the problem step by step.
Given: - Radius of the sphere (r) = 5 - Distance of the plane from the center of the sphere (d) = 4
Understanding the Problem
In this scenario, the sphere is intersected by a plane. The intersection forms a circle on the surface of the sphere. We need to find the radius of this circle.
Solution
To find the radius of the intersection circle, we can use the Pythagorean theorem. The distance from the center of the sphere to the intersection circle is the hypotenuse of a right triangle, with the radius of the sphere (r) as one side and the distance of the plane from the center of the sphere (d) as the other side.
Using the Pythagorean theorem, we can calculate the radius of the intersection circle (R) as follows:
R = √(r^2 - d^2)
Substituting the given values, we have:
R = √(5^2 - 4^2) = √(25 - 16) = √9 = 3
Therefore, the radius of the intersection circle is 3.
Conclusion
The radius of the intersection circle formed by a sphere and a plane, given that the radius of the sphere is 5 and the distance of the plane from the center of the sphere is 4, is 3.
Please let me know if there's anything else I can help you with!


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili