
Решите уравнение(sin2x+cosx)(кореньиз 3+корень из 3tgx)=0 помогите решить плиз!(


Ответы на вопрос

2sinxcosx+cosx=0
cosx(2sinx+1)=0
cosx=0⇒x=π/2+πn,n∈z
sinx=-1/2⇒x=(-1)^(k+1)*π/6+πk,k∈z
√3+√3tgx=0
√3tgx=-√3
tgx=-1⇒x=-π/4+πm,m∈z



Solving the Equation
To solve the equation (sin2x + cosx)(√3 + √3tgx) = 0, we need to find the values of x that satisfy this equation.
Let's break down the equation and solve it step by step.
1. First, let's consider the first factor: sin2x + cosx. This is a trigonometric expression that involves sine and cosine functions. We can simplify it using trigonometric identities.
Using the double-angle identity for sine, we have: sin2x = 2sinxcosx.
Substituting this back into the equation, we get: 2sinxcosx + cosx.
Factoring out cosx, we have: cosx(2sinx + 1).
2. Now, let's consider the second factor: √3 + √3tgx. This involves the tangent function.
We can rewrite tgx as sinx/cosx.
Substituting this back into the equation, we get: √3 + √3sinx/cosx.
Simplifying further, we have: (√3cosx + √3sinx)/cosx.
3. Combining the two factors, we have: cosx(2sinx + 1)(√3cosx + √3sinx)/cosx.
Simplifying, we get: (2sinx + 1)(√3cosx + √3sinx).
4. Now, we set the equation equal to zero and solve for x:
(2sinx + 1)(√3cosx + √3sinx) = 0.
This equation will be satisfied if either of the factors is equal to zero.
Setting the first factor equal to zero, we have: 2sinx + 1 = 0.
Solving for x, we get#### Solving the Equation
To solve the equation (sin2x + cosx)(√3 + √3tgx) = 0, we need to find the values of x that satisfy this equation.
Let's break down the equation and solve it step by step.
First, let's consider the product of the two factors: (sin2x + cosx)(√3 + √3tgx).
The equation will be satisfied if either of the two factors is equal to zero. So we have two cases to consider:
Case 1: sin2x + cosx = 0 To solve this equation, we can use the trigonometric identity: sin2x = 2sinxcosx.
Substituting this identity into the equation, we get: 2sinxcosx + cosx = 0
Factoring out cosx, we have: cosx(2sinx + 1) = 0
This equation will be satisfied if either cosx = 0 or 2sinx + 1 = 0.
For cosx = 0, the solutions are x = π/2 + nπ, where n is an integer.
For 2sinx + 1 = 0, we can solve for sinx: 2sinx = -1 sinx = -1/2
The solutions for sinx = -1/2 are x = 7π/6 + 2nπ and x = 11π/6 + 2nπ, where n is an integer.
Case 2: √3 + √3tgx = 0 To solve this equation, we need to isolate tgx.
Subtracting √3 from both sides, we have: √3tgx = -√3
Dividing both sides by √3, we get: tgx = -1
The solutions for tgx = -1 are x = 3π/4 + nπ, where n is an integer.
Summary of Solutions
Combining the solutions from both cases, we have the following values of x that satisfy the equation:
- For cosx = 0: x = π/2 + nπ, where n is an integer. - For sinx = -1/2: x = 7π/6 + 2nπ and x = 11π/6 + 2nπ, where n is an integer. - For tgx = -1: x = 3π/4 + nπ, where n is an integer.
These are the solutions to the equation (sin2x + cosx)(√3 + √3tgx) = 0.
Please note that these solutions are based on the given equation and the trigonometric identities used.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili