
В школьной библиотеке находится в 1200 книг три десятых части которых составляет справочники три
пятых всех книг учебники оставшейся части художественной литературы С каких книг и справочников или учебники в библиотеке больше на сколько книг

Ответы на вопрос

1200:5*3=240*3=720 учебники
1200-360+720=120 худ.литература
720>360
справочников больше на 720-360=360 книг
-----
условие не очень понятно,вроде так



1200÷5×3 = 720 ( книг) учебники
360+720= 1080 (книг) справочники и учебники вместе
1200 - 1080 = 120( книг) художественная литература
больше учебников:
720 - 360 = на 360 больше, чем справочников
720 - 120 = на 600 , чем художественной литературы



Давайте разберем задачу шаг за шагом.
У нас есть 1200 книг в школьной библиотеке. Для удобства, давайте обозначим количество книг следующим образом:
- \( x \) - количество книг справочников, - \( y \) - количество книг учебников, - \( z \) - количество книг художественной литературы.
Исходя из условия задачи:
1. Три десятых части всех книг - это \( \frac{1}{10} \) от общего числа книг, то есть \( \frac{1}{10} \times 1200 = 120 \) книг. 2. Три пятых всех книг - это \( \frac{3}{5} \) от общего числа книг, то есть \( \frac{3}{5} \times 1200 = 720 \) книг.
Теперь мы можем записать систему уравнений:
1. \( x + y + z = 1200 \) - общее количество книг. 2. \( \frac{1}{10}(x + y + z) = 120 \) - три десятых всех книг. 3. \( \frac{3}{5}(x + y) = 720 \) - три пятых всех книг учебников и справочников (так как остальные книги - художественная литература).
Теперь решим эту систему уравнений.
Сначала упростим второе и третье уравнения:
2. \( \frac{1}{10}(x + y + z) = 120 \) \( x + y + z = 1200 \) 3. \( \frac{3}{5}(x + y) = 720 \) \( 3(x + y) = 5 \times 720 \) \( 3x + 3y = 3600 \)
Теперь мы можем сложить уравнения (1) и (2), чтобы избавиться от переменной \( z \):
\[ (x + y + z) + (x + y) = 1200 + 3x + 3y \]
\[ 2(x + y) + z = 1200 + 3x + 3y \]
Теперь подставим значение из уравнения (3) в полученное уравнение:
\[ 2 \times 720 + z = 1200 + 3x + 3y \]
\[ 1440 + z = 1200 + 3x + 3y \]
\[ z = 1200 + 3x + 3y - 1440 \]
\[ z = 3x + 3y - 240 \]
Таким образом, мы нашли выражение для переменной \( z \). Теперь подставим его в уравнение (1):
\[ x + y + (3x + 3y - 240) = 1200 \]
\[ 4x + 4y = 1440 \]
\[ x + y = 360 \]
Теперь у нас есть система уравнений:
1. \( 4x + 4y = 1440 \) 2. \( x + y = 360 \)
Решим эту систему. Выразим \( y \) из второго уравнения:
\[ y = 360 - x \]
Подставим это значение в первое уравнение:
\[ 4x + 4(360 - x) = 1440 \]
\[ 4x + 1440 - 4x = 1440 \]
\[ 1440 = 1440 \]
Уравнение верно, и у нас есть бесконечное количество решений. Это означает, что задача имеет множество вариантов распределения книг по категориям (справочники, учебники, художественная литература), при которых условия задачи выполняются.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili