
Первый автомат в минуту закрывает 40 банок а второй на 5 банок больше 1 сколько банок закроет эти
автоматы за 3/4 часа при их одновременном включении За сколько времени работает вместе они закроют 5782

Ответы на вопрос

2) 40+45=85 столько банок оба автомата закроют банок за час
3) 85•3 =255
85•4=340 } столько банок автомат закроет за 3/4 часа
4)5782÷85=68.023 часа≈ 69 часов автоматы закроют 5782 банки



Problem Analysis
We are given two machines that can close a certain number of jars per minute. The first machine can close 40 jars per minute, while the second machine can close 5 jars more than the first machine. We need to determine how many jars these machines will close in 3/4 of an hour (45 minutes) when they are both turned on simultaneously. Additionally, we need to find out how long it will take for these machines to close a total of 5782 jars.Solution
To find out how many jars the machines will close in 45 minutes, we need to calculate the total number of jars closed by both machines in one minute and then multiply it by 45.Let's start by finding out how many jars the second machine can close in one minute. We know that the second machine can close 5 jars more than the first machine, which closes 40 jars per minute. Therefore, the second machine can close 40 + 5 = 45 jars per minute.
Now, let's calculate the total number of jars closed by both machines in one minute. The first machine closes 40 jars per minute, and the second machine closes 45 jars per minute. Therefore, the total number of jars closed by both machines in one minute is 40 + 45 = 85 jars per minute.
To find out how many jars the machines will close in 45 minutes, we multiply the total number of jars closed in one minute (85) by 45: 85 * 45 = 3825 jars.
So, when both machines are turned on simultaneously for 45 minutes, they will close a total of 3825 jars.
Next, let's determine how long it will take for these machines to close a total of 5782 jars. We can set up a proportion to solve this problem.
Let x represent the time it takes for the machines to close 5782 jars.
The ratio of jars closed by both machines in one minute is 85 jars per minute.
Therefore, we can set up the following proportion:
85 jars / 1 minute = 5782 jars / x minutes
To solve for x, we can cross-multiply and then divide:
85 * x = 5782 * 1
x = (5782 * 1) / 85
x ≈ 68.02 minutes
So, it will take approximately 68.02 minutes for these machines to close a total of 5782 jars.
Answer
- When both machines are turned on simultaneously for 45 minutes, they will close a total of 3825 jars. - It will take approximately 68.02 minutes for these machines to close a total of 5782 jars.Please let me know if you need any further clarification.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili