Вопрос задан 09.01.2020 в 22:16. Предмет Математика. Спрашивает Ахтырский Стас.

Чему равно n, если 1*2*3*...*n=2степень15*3степень6*5степень3*7степень2*11*13?

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Белов Данил.
Методом подбора подойдет?
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте начнем с того, что вам нужно найти значение переменной "n", если произведение чисел от 1 до "n" равно произведению следующих чисел: 2^15 * 3^6 * 5^3 * 7^2 * 11 * 13.

Для решения этой задачи, мы можем разложить все числа на простые множители и сравнить степени простых чисел в исходном уравнении и в разложении чисел от 1 до "n".

Давайте посмотрим на каждое число в отдельности:

1. 2^15: Здесь мы имеем степень 15 для числа 2. 2. 3^6: Здесь мы имеем степень 6 для числа 3. 3. 5^3: Здесь мы имеем степень 3 для числа 5. 4. 7^2: Здесь мы имеем степень 2 для числа 7. 5. 11: Здесь мы имеем число 11. 6. 13: Здесь мы имеем число 13.

Теперь давайте посмотрим на разложение чисел от 1 до "n" на простые множители. Это позволит нам сравнить степени простых чисел и найти значение "n".

Разложение чисел от 1 до "n" на простые множители:

1 = 2^0 * 3^0 * 5^0 * 7^0 * 11^0 * 13^0 2 = 2^1 * 3^0 * 5^0 * 7^0 * 11^0 * 13^0 3 = 2^0 * 3^1 * 5^0 *

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос