
Вопрос задан 21.05.2018 в 08:17.
Предмет Математика.
Спрашивает Ко Дмитрий.
Найдите точку минимума функции y=1,5x^2-45х+162lnx-9


Ответы на вопрос

Отвечает Красиков Даня.
Сначала надо найти все экстремумы функции, а потом определить какой из них минимум. В точках экстремума выполняется равенство y'(x)=0;
y'(x)=3x-45+162/x;
3x-45+162/x=0;
3x^2-45x+162=0;
D=2025-1994=81;
x1=(45+9)/6=9;
x2=(45-9)/6=6;
Получили два экстремума. Надо определить какой из них минимум. В точке минимума выполняется неравенство y''(xэ)>0, а в точке максимума y''(xэ)<0; где xэ - точка экстремума.
y''(x)=3-162/x^2;
y''(9)=3-162/81=1; 1>0, значит это (x=9) точка минимума.
y''(6)=3-162/36=-1.5; -1.5<0, значит это (x=6) точка максимума.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili