
Вопрос задан 24.05.2019 в 10:35.
Предмет Математика.
Спрашивает Дамирова Эля.
Радиус окружности с центром в точке O равен 65 длина хорды AB равна 126 найдите расстояние от хорды
AB до параллельной ей касательно k

Ответы на вопрос

Отвечает Феоктистова Виктория.
Радиус, проведенный к точке касательной, перпендикулярен касательной. Следовательно он перпендикулярен хорде, поскольку хорда параллельна касательной (по условию). Соединим концы хорды и центр окружности. Получим треугольник АВО. Он равнобедренный и в нем проведена высота ОМ, которая принадлежит радиусу ОК, проведенному к касательной.
АМ=МВ, т.к. высота в равнобедренном треугольнике является и медианой.Найдем ОМ.
Рассмотрим треугольник АМО. Он прямоугольный. Мы знаем гипотенузу - АО. Это радиус. И знаем АМ. Это половина хорды. Находим второй катет ОМ по теореме Пифагора.
ОМ=√(65²-63²)=16.
Следовательно МК=65-16=49
АМ=МВ, т.к. высота в равнобедренном треугольнике является и медианой.Найдем ОМ.
Рассмотрим треугольник АМО. Он прямоугольный. Мы знаем гипотенузу - АО. Это радиус. И знаем АМ. Это половина хорды. Находим второй катет ОМ по теореме Пифагора.
ОМ=√(65²-63²)=16.
Следовательно МК=65-16=49


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili