
В пирамиде находилось 5 ружей, два из которых имели оптические прицелы. Солдат взял наугад одно из
ружей и попал в цель. какова вероятность что он стрелял из оптического ружья, если для него вероятность попадания из ружья с оптическим прицелом = 0,8, а без него = 0,5?

Ответы на вопрос

Одновременные события - солдат должен взять ружьё с оптикой (1 событие) и попасть в цель (2 событие).
Вероятность того, что взял с оптикой 2/5 = 0,4. Вероятность того, что попал 0,8.
Вероятность того, что попал из оптики 0,4*0,8 = 0,32.



Problem Analysis
In this problem, we are given a pyramid with 5 rifles, two of which have optical sights. A soldier randomly selects one rifle and hits the target. We need to find the probability that the soldier shot from a rifle with an optical sight, given that the probability of hitting the target with a rifle with an optical sight is 0.8, and without an optical sight is 0.5.Solution
Let's denote the event of shooting from a rifle with an optical sight as A, and the event of hitting the target as B. We need to find the conditional probability P(A|B), which represents the probability of shooting from a rifle with an optical sight given that the target was hit.To solve this problem, we can use Bayes' theorem, which states that:
P(A|B) = (P(B|A) * P(A)) / P(B)
Here, P(B|A) represents the probability of hitting the target given that the soldier shot from a rifle with an optical sight, P(A) represents the probability of shooting from a rifle with an optical sight, and P(B) represents the probability of hitting the target.
Given that P(B|A) = 0.8, P(A) = 2/5 (since there are 2 rifles with optical sights out of 5 rifles), and P(B) can be calculated using the law of total probability, we can substitute these values into Bayes' theorem to find P(A|B).
Calculation
To calculate P(B), we can use the law of total probability, which states that:P(B) = P(B|A) * P(A) + P(B|A') * P(A')
Here, P(B|A') represents the probability of hitting the target given that the soldier shot from a rifle without an optical sight, and P(A') represents the probability of shooting from a rifle without an optical sight.
Given that P(B|A') = 0.5 and P(A') = 3/5 (since there are 3 rifles without optical sights out of 5 rifles), we can substitute these values into the law of total probability to find P(B).
Now, let's calculate P(B):
P(B) = P(B|A) * P(A) + P(B|A') * P(A')
P(B) = 0.8 * (2/5) + 0.5 * (3/5)
P(B) = 0.32 + 0.3
P(B) = 0.62
Now, let's substitute the values into Bayes' theorem to find P(A|B):
P(A|B) = (P(B|A) * P(A)) / P(B)
P(A|B) = (0.8 * (2/5)) / 0.62
P(A|B) = 0.32 / 0.62
P(A|B) ≈ 0.5161
Answer
The probability that the soldier shot from a rifle with an optical sight, given that the target was hit, is approximately 0.5161.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili