Вопрос задан 09.05.2019 в 08:20. Предмет Математика. Спрашивает Колесниченко Денис.

Длина прямоугольного параллелепипеда равна 45см ширина состовляет 4/9 длины и 12/7 высоты.объем?

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Гасымов Канан.
1) 45*4/9=20(см)-ширина
2) 20*7/12=11,6 (см)-высота
3) 45*20*11,6= 1044(см3)-объём

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи, давайте обозначим длину, ширину и высоту прямоугольного параллелепипеда следующим образом:

Пусть \(L\) - длина, \(W\) - ширина и \(H\) - высота.

Условие задачи гласит, что: \[ L = 45 \, \text{см} \] \[ W = \frac{4}{9}L \] \[ H = \frac{12}{7}L \]

Объем \(V\) прямоугольного параллелепипеда определяется формулой: \[ V = L \cdot W \cdot H \]

Теперь подставим значения ширины и высоты в формулу объема: \[ V = L \cdot \left(\frac{4}{9}L\right) \cdot \left(\frac{12}{7}L\right) \]

Умножим числители и знаменатели, чтобы упростить уравнение:

\[ V = \frac{48}{63} \cdot L^3 \]

Теперь упростим дробь:

\[ V = \frac{16}{21} \cdot L^3 \]

Теперь мы знаем, что объем прямоугольного параллелепипеда равен \(\frac{16}{21}\) произведения длины \(L\) в кубе.

Подставим значение длины (\(L = 45 \, \text{см}\)):

\[ V = \frac{16}{21} \cdot (45)^3 \, \text{см}^3 \]

Теперь вычислим значение:

\[ V = \frac{16}{21} \cdot 91125 \, \text{см}^3 \]

\[ V = 56000 \, \text{см}^3 \]

Итак, объем прямоугольного параллелепипеда равен \(56000 \, \text{см}^3\).

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос