
Lim(e^(sinx)-e^(sin2x))/2 при х стремящемся к нулю. решить не используя правило лапиталя, не
дифференцируя.

Ответы на вопрос




Calculation of the Limit
To find the limit of the expression lim(e^(sinx)-e^(sin2x))/2 as x approaches zero without using L'Hôpital's rule or differentiation, we can use the properties of trigonometric functions and the exponential function.
Let's break down the expression step by step:
1. Start with the expression lim(e^(sinx)-e^(sin2x))/2. 2. We can rewrite e^(sin2x) as (e^(sinx))^2. 3. Now, the expression becomes lim(e^(sinx)-(e^(sinx))^2)/2.
To proceed further, we can use the fact that sinx is approximately equal to x for small values of x. This approximation is known as the small-angle approximation.
4. Apply the small-angle approximation to the expression: lim(e^x-(e^x)^2)/2.
Now, let's evaluate the limit using this simplified expression.
5. Substitute x = 0 into the expression: lim(e^0-(e^0)^2)/2. 6. Simplify the expression: lim(1-1)/2. 7. Evaluate the limit: lim(0)/2 = 0.
Therefore, the limit of the expression (e^(sinx)-e^(sin2x))/2 as x approaches zero is 0.
Conclusion
The limit of the expression (e^(sinx)-e^(sin2x))/2 as x approaches zero is 0. This result was obtained by using the small-angle approximation for sinx and evaluating the limit directly without using L'Hôpital's rule or differentiation.
Please note that this solution is based on the given expression and the properties of trigonometric and exponential functions.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili