1. упрастите выражение (х-3)^2-(х+3)(х-3) найдите его значение при х= -0,1 2. постройте график
линейной функции y= 0,5x-6 и определите проходит ли он через точки А(-26;-19) Р(-70;-29) 3. решите уравнение 8х-3/7 - 3x+1/10 =2Ответы на вопрос
-6x+18=-0.6+18=17.4
I will try to answer your questions in detail. Please note that I am not a professional math teacher, so I may make some mistakes or oversimplify some concepts. You should always check your answers with other sources or consult a qualified tutor if you have any doubts.
1. To simplify the expression (x-3)^2-(x+3)(x-3), we can use the formula (a-b)^2=a^2-2ab+b^2 and the distributive property of multiplication. We get:
(x-3)^2-(x+3)(x-3) = (x^2-6x+9)-(x^2-9) = x^2-6x+9-x^2+9 = -6x+18
To find the value of this expression when x=-0.1, we can substitute x with -0.1 and evaluate:
-6x+18 = -6(-0.1)+18 = 0.6+18 = 18.6
So, the simplified expression is -6x+18 and its value when x=-0.1 is 18.6.
2. To plot the graph of the linear function y=0.5x-6, we can use the slope-intercept form of a line, which is y=mx+b, where m is the slope and b is the y-intercept. In this case, m=0.5 and b=-6, so the line has a positive slope of 0.5 and crosses the y-axis at -6. To draw the line, we can find two points on it and connect them with a straight line. One point is the y-intercept, which is (0,-6). Another point can be found by choosing any value for x and plugging it into the equation. For example, if x=10, then y=0.5(10)-6=5-6=-1, so the point is (10,-1). Here is the graph of the line:
