Вопрос задан 05.05.2019 в 16:04. Предмет Математика. Спрашивает Алимов Елхан.

Найдите икс: икс в модуле плюс четыре целые две десятых равно четыре целые четыре десятых

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Гришкина Вика.
[ x]+4,2 =4,4
1) x+4,2=4,4
    x= 4,4 - 4,2
    x= 0,2
2) -x+4,2 =4,4
    -x = 4,4-4,2
      x= -0,2
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для нахождения значения переменной "x" в уравнении модуля необходимо разбить его на два случая: когда выражение внутри модуля положительное и когда оно отрицательное.

1. Выражение внутри модуля положительное: Пусть \( x + 4\frac{2}{10} = 4\frac{4}{10} \). Тогда \( x = 4\frac{4}{10} - 4\frac{2}{10} \). Выполняя вычитание, получим \( x = 4\frac{4}{10} - 4\frac{2}{10} = 0\frac{2}{10} = 0.2 \).

2. Выражение внутри модуля отрицательное: Пусть \( -(x + 4\frac{2}{10}) = 4\frac{4}{10} \). Тогда \( -x - 4\frac{2}{10} = 4\frac{4}{10} \). Для начала, умножим обе стороны на -1, чтобы избавиться от знака минус перед "x". Получим \( x + 4\frac{2}{10} = -4\frac{4}{10} \). Теперь выразим "x": \( x = -4\frac{4}{10} - 4\frac{2}{10} \). Выполняя вычитание, получим \( x = -4\frac{4}{10} - 4\frac{2}{10} = -8\frac{6}{10} = -8.6 \).

Таким образом, у нас два решения для уравнения модуля: \( x = 0.2 \) и \( x = -8.6 \).

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос