
Даны точки А(2;3), В(5;5), С(8;3) и D(5;1). докажите, что АС и ВD пересекаются и тоской пересечения
делятся пополам."

Ответы на вопрос

М(5;3)



Geometric Proof of Intersection and Midpoint Division
To prove that the line segments AC and BD intersect and that their point of intersection divides them in half, we can use the concept of midpoint and the properties of linear equations.
Step 1: Finding the Midpoint of AC
The midpoint of a line segment with endpoints (x1, y1) and (x2, y2) is given by the formula: \[ \left( \frac{x1 + x2}{2}, \frac{y1 + y2}{2} \right) \]
Using this formula, we can find the midpoint of AC: \[ \left( \frac{2 + 8}{2}, \frac{3 + 3}{2} \right) = (5, 3) \]
Step 2: Finding the Midpoint of BD
Similarly, the midpoint of BD can be found using the coordinates of B and D: \[ \left( \frac{5 + 5}{2}, \frac{5 + 1}{2} \right) = (5, 3) \]
Step 3: Showing Intersection
Now, to prove that AC and BD intersect, we can compare the slopes of the two line segments. If the slopes are different, the lines intersect.
The slope of AC is given by: \[ m_{AC} = \frac{3 - 3}{2 - 8} = 0 \]
The slope of BD is given by: \[ m_{BD} = \frac{1 - 5}{5 - 5} = undefined \]
Since the slopes are different, AC and BD intersect.
Step 4: Proving Midpoint Division
To prove that the point of intersection divides the line segments in half, we can use the midpoint formula again to find the coordinates of the point of intersection.
The coordinates of the point of intersection can be found by solving the equations of the lines AC and BD simultaneously.
The equation of AC is: \[ y = 3 \]
The equation of BD is: \[ x = 5 \]
The point of intersection is (5, 3), which is the midpoint of both line segments AC and BD.
Therefore, we have shown that AC and BD intersect at the point (5, 3) and that this point divides both line segments in half.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili