Вопрос задан 05.05.2019 в 05:54. Предмет Математика. Спрашивает Комарова Арина.

Помогите прошу!2 задания:1)Разбейте числа1,2,9,25,49 и 64 на две группы так,чтобы сумма чисел в

одной группе была равна сумме чисел другой группы.2)Все грани игрального кубика занумерованы числами от 1 до 6,причем сумма чисел на любых двух противопложных гранях равна 7.Маша склеила столбик из 4 таких кубиков и подсчитала сумму чисел на всех наружных гранях.Какое самое большое число она могла получить?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Чеснокова Диана.

1 группа-   49-9+25-2+1=64

2группа-    64-49=25-9-2+1 = 15

0 0
Отвечает Ивановская Яна.

1) группа 1 - 49, 25, 1 

    сумма этих чисел будет равна - 75

    группа 2 - 64, 9, 2,

    сумма этих чисел будет равна тоже 75

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Задание 1: Разбиение чисел на две группы

Для разбиения чисел 1, 2, 9, 25, 49 и 64 на две группы так, чтобы сумма чисел в одной группе была равна сумме чисел в другой группе, мы можем использовать метод перебора всех возможных комбинаций.

Один из способов разбиения может быть следующим: - Группа 1: 1, 9, 49 - Группа 2: 2, 25, 64

Сумма чисел в группе 1: 1 + 9 + 49 = 59 Сумма чисел в группе 2: 2 + 25 + 64 = 91

Таким образом, сумма чисел в одной группе равна сумме чисел в другой группе.

Ответ: Группа 1: 1, 9, 49 Группа 2: 2, 25, 64

Задание 2: Сумма чисел на наружных гранях столбика из 4 кубиков

У игрального кубика сумма чисел на любых двух противоположных гранях равна 7. Если Маша склеила столбик из 4 таких кубиков, то на каждой грани столбика будет число, и сумма чисел на всех наружных гранях будет максимальной.

Чтобы получить максимальную сумму, нужно выбрать наибольшие числа для каждой грани столбика. Так как сумма чисел на противоположных гранях равна 7, то на противоположных гранях должны быть числа, которые в сумме дают 7. Например, на верхней грани может быть число 6, а на нижней грани число 1. Аналогично, на передней грани может быть число 5, а на задней грани число 2. Таким образом, на каждой грани столбика будет наибольшее число.

Ответ: Самое большое число, которое Маша могла получить в сумме на всех наружных гранях столбика из 4 кубиков, равно 6 + 1 + 5 + 2 = 14.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос