
Решите показательное уравнение


Ответы на вопрос




Конечно! Я могу помочь вам решить показательное уравнение. Показательное уравнение - это уравнение, в котором неизвестное значение находится в показателе степени.
Общий вид показательного уравнения выглядит так:
a^x = b
где "a" - это база показателя, "x" - неизвестное значение, а "b" - результат возведения в степень.
Для решения показательного уравнения вам необходимо применить логарифмы. Логарифм - это обратная операция возведения числа в степень. В данном случае, мы будем использовать логарифм по базе "a" от обеих сторон уравнения:
log_a(a^x) = log_a(b)
Согласно свойству логарифмов, логарифм числа возведенного в степень равен самой степени:
x = log_a(b)
Таким образом, чтобы решить показательное уравнение, необходимо вычислить логарифм по базе "a" от "b".
Давайте рассмотрим пример:
Решим уравнение 2^x = 16.
В данном случае, база показателя "a" равна 2, неизвестное значение "x" и результат возведения в степень "b" равен 16.
Применяем логарифм по базе 2 к обеим сторонам уравнения:
log_2(2^x) = log_2(16)
Используем свойство логарифмов:
x = log_2(16)
Теперь, чтобы вычислить значение логарифма, можно воспользоваться калькулятором или таблицами логарифмов. В данном случае, логарифм по базе 2 от 16 равен 4.
Ответ: x = 4.
Таким образом, решение показательного уравнения 2^x = 16 равно x = 4.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili