
Решите систему уравнений:(срочно нужно и правильно). Заранее спасибо


Ответы на вопрос




Solving the System of Equations
To solve the system of equations, we need to find the values of x and y that satisfy both equations. Here is the system of equations you provided:
Equation 1: x - xy = -3 Equation 2: y + xy = 8
To solve this system, we can use various methods such as substitution, elimination, or matrix methods. Let's solve it using the substitution method.
Substitution Method
Step 1: Solve Equation 1 for x in terms of y: x = -3 + xy
Step 2: Substitute the value of x from Step 1 into Equation 2: y + (-3 + xy)y = 8
Simplifying the equation: y - 3y + xy^2 = 8
Step 3: Rearrange the equation: xy^2 - 3y + y - 8 = 0
Step 4: Combine like terms: xy^2 - 2y - 8 = 0
Now, we have a quadratic equation in terms of y. To solve for y, we can use the quadratic formula:
y = (-b ± √(b^2 - 4ac)) / (2a)
Comparing the equation to the quadratic formula, we have: a = x, b = -2, c = -8
Plugging in the values, we get: y = (-(-2) ± √((-2)^2 - 4(x)(-8))) / (2x)
Simplifying further: y = (2 ± √(4 + 32x)) / (2x) y = (1 ± √(1 + 8x)) / x
Now, we have the value of y in terms of x. We can substitute this value back into Equation 1 to solve for x.
Conclusion
To summarize, we used the substitution method to solve the system of equations. We obtained the value of y in terms of x, and then substituted it back into Equation 1 to solve for x.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili