
При каких значениях t уравнение 2x^2-7x+t-8=0 имеет два корня?


Ответы на вопрос

D=49-4×2×(t-8)=49-8t+64=113-8t
113-8t>0
-8t>-113
t<113/8
t<14,125



Solving the Quadratic Equation 2x^2 - 7x + t - 8 = 0
To find the values of t for which the equation 2x^2 - 7x + t - 8 = 0 has two roots, we can use the discriminant formula.
The discriminant (denoted as Δ) of a quadratic equation ax^2 + bx + c = 0 is given by the formula:
Δ = b^2 - 4ac
Where: - a = 2 - b = -7 - c = t - 8
For the equation to have two distinct real roots, the discriminant Δ must be greater than 0.
Calculating the Discriminant
Using the discriminant formula, we can calculate the discriminant Δ for the given quadratic equation:
Δ = (-7)^2 - 4 * 2 * (t - 8)
Finding the Values of t
For the equation to have two distinct real roots, the discriminant Δ must be greater than 0. Therefore, we need to solve the inequality:
Δ > 0
Substituting the expression for Δ, we get:
(-7)^2 - 4 * 2 * (t - 8) > 0
Solving this inequality will give us the range of values for t for which the equation 2x^2 - 7x + t - 8 = 0 has two distinct real roots.
Conclusion
By solving the inequality derived from the discriminant, we can find the values of t for which the given quadratic equation has two distinct real roots.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili