
Определите какой цифрой заканчивается разность 2017^999-2016^777 ^ - степень


Ответы на вопрос

Имеют значение только последние цифры.
2017^999 - 2016^777 = 7^999 - 6^777
7^4 = 2401 - кончается на 1, поэтому, если n кратно 4, то 7^n = 1.
7^999 = 7^996*7^3 = 1*343 = 343
6 в любой степени кончается на 6.
6^777 = 6
Получаем
2017^999 - 2016^777 = 7^999 - 6^777 = 343 - 6 = 337
Это число кончается на 7.



Determining the Ending Digit of the Difference 2017^999 - 2016^777
To determine the ending digit of the difference 2017^999 - 2016^777, we can use the concept of modular arithmetic. The ending digit of a number in base 10 is the remainder when divided by 10. Therefore, we can find the remainder of the difference 2017^999 - 2016^777 when divided by 10 to determine its ending digit.
First, let's calculate the individual values of 2017^999 and 2016^777.
Calculating 2017^999: The value of 2017^999 is extremely large, but we can find its ending digit by using modular arithmetic. We can use the property that the ending digit of a number raised to a power repeats in a cycle. For example, the ending digit of 7^1 is 7, 7^2 is 9, 7^3 is 3, and so on. This creates a cycle of ending digits: 7, 9, 3, 1. Therefore, to find the ending digit of 2017^999, we can find the remainder of 999 when divided by 4, and use that to determine the ending digit.
Calculating 2016^777: Similarly, we can find the ending digit of 2016^777 using modular arithmetic. The ending digit of 6^1 is 6, 6^2 is 6, 6^3 is 6, and so on. This means the ending digit of 2016^777 is 6.
Now, let's find the difference 2017^999 - 2016^777 and determine its ending digit.
Finding the Ending Digit of the Difference: We can subtract the ending digit of 2016^777 from the ending digit of 2017^999 to find the ending digit of the difference.
Ending Digit of 2017^999: The remainder of 999 when divided by 4 is 3. Therefore, the ending digit of 2017^999 is the same as the ending digit of 7^3, which is 3.
Ending Digit of 2016^777: The ending digit of 2016^777 is 6.
Difference and Ending Digit: The difference 2017^999 - 2016^777 is 3 - 6 = -3. However, since we are interested in the ending digit, we take the positive remainder when divided by 10, which is 7.
Therefore, the ending digit of the difference 2017^999 - 2016^777 is 7.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili