Вопрос задан 02.05.2019 в 06:36. Предмет Математика. Спрашивает Сейсенбай Жасулан.

Решите уравнение: 124:(y-5)=31 38x+15=91 44:z+9=20

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Складчиков Ілля.

124:(у-5)=31

у-5=124:31

у-5=4

у=9

 

 

38х+15=91

38х=76

х=2

 

 

44:z+9=20

44:z=20-9

44:z=11

z=4

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Я могу помочь вам решить уравнение. Вот подробные шаги решения:

- 124:(y-5)=31 - Для начала, давайте умножим обе стороны уравнения на (y-5), чтобы избавиться от знаменателя: - 124 = 31(y-5) - Затем, давайте раскроем скобки и распределим 31 по каждому члену внутри скобок: - 124 = 31y - 155 - Теперь, давайте перенесем все члены, содержащие y, в левую часть уравнения, а все остальные члены - в правую часть уравнения: - 31y - 124 = 155 - Наконец, давайте поделим обе стороны уравнения на 31, чтобы получить y один: - y = (155 + 124) / 31 - y = 9

- 38x + 15 = 91 - Для начала, давайте вычтем 15 из обеих сторон уравнения, чтобы избавиться от свободного члена: - 38x = 91 - 15 - 38x = 76 - Затем, давайте поделим обе стороны уравнения на 38, чтобы получить x один: - x = 76 / 38 - x = 2

- 44:z + 9 = 20 - Для начала, давайте вычтем 9 из обеих сторон уравнения, чтобы избавиться от свободного члена: - 44:z = 20 - 9 - 44:z = 11 - Затем, давайте умножим обе стороны уравнения на z, чтобы избавиться от знаменателя: - 44 = 11z - Наконец, давайте поделим обе стороны уравнения на 11, чтобы получить z один: - z = 44 / 11 - z = 4

Надеюсь, это было полезно. Если у вас есть еще вопросы, я рад помочь.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос