Вопрос задан 02.05.2019 в 04:53. Предмет Математика. Спрашивает Кот Диана.

Улитка ползет от одного дерева до другого. Каждый день она проползает на одно и то же расстояние

больше, чем в предыдущий день. Известно, что за первый и последний дни улитка проползла в общей сложности 8 метров. Определите, сколько дней улитка потратила на весь путь,если расстояние между деревьями равно 20 метрам.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Роллер Таня.
Такое движение - это арифметическая прогрессия (каждый день улитка проползает на одно и то же расстояние больше).
Сумма n членов арифметической прогрессии находится по формуле
S = (a1 + an)/2 * n
Здесь a1 - первый член прогрессии (расстояние,которое улитка проползла за первый день)
an - последний (n - ый член прогрессии) - расстояние в последний день
n - число суммируемых членов,т.е. число дней,которые ползла улитка (это то,что нужно найти)
Из формулы выразим n = 2S / (a1+an)
По условию S = 20м (общее расстояние,т.е.сумма всех расстояний,которые проползала улитка)
a1+an = 8 (первый и последний день в сумме)
Тогда
S = 2*20/8 = 40/8 = 5
Ответ:улитка ползла 5 дней.
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given that a snail crawls from one tree to another every day, and each day it crawls a greater distance than the previous day. We also know that the snail crawled a total of 8 meters on the first and last days, and the distance between the trees is 20 meters. We need to determine how many days the snail spent on the entire journey.

Solution

Let's assume that the snail crawled x meters on the first day. Since the snail crawls a greater distance each day, we can represent the distance crawled on each subsequent day as x + d, where d is the additional distance crawled each day.

On the last day, the snail crawled x + (n-1)d meters, where n is the total number of days.

We are given that the snail crawled a total of 8 meters on the first and last days. Therefore, we can write the following equation:

x + (x + (n-1)d) = 8

Simplifying the equation, we get:

2x + (n-1)d = 8

We also know that the distance between the trees is 20 meters. So, the total distance crawled by the snail is equal to the distance between the trees:

x + (x + d) + (x + 2d) + ... + (x + (n-1)d) = 20

Simplifying the equation, we get:

nx + (1 + 2 + ... + (n-1))d = 20

The sum of the first n natural numbers can be calculated using the formula:

1 + 2 + ... + (n-1) = (n-1)(n)/2

Substituting this into the equation, we get:

nx + ((n-1)(n)/2)d = 20

Now we have two equations with two unknowns (x and d). We can solve these equations simultaneously to find the values of x and d.

Let's solve the equations:

2x + (n-1)d = 8 ---(1) nx + ((n-1)(n)/2)d = 20 ---(2)

From equation (1), we can express x in terms of d:

x = (8 - (n-1)d)/2

Substituting this into equation (2), we get:

n(8 - (n-1)d)/2 + ((n-1)(n)/2)d = 20

Simplifying the equation, we get:

4n - (n^2 - n)d + nd - d = 40

Rearranging the terms, we get:

(n^2 - 3n + 2)d = 40 - 4n

Simplifying further, we get:

(n^2 - 3n + 2)d = 4(10 - n)

Dividing both sides by (n^2 - 3n + 2), we get:

d = 4(10 - n)/(n^2 - 3n + 2)

Now we can substitute the values of n from 1 to infinity and calculate the corresponding values of d. We need to find the value of n for which d is a positive integer, as the distance crawled by the snail cannot be a fraction of a meter.

Let's calculate the values of d for different values of n:

For n = 1, d = 4(10 - 1)/(1^2 - 3*1 + 2) = 4(10 - 1)/(1 - 3 + 2) = 4(9)/0 = undefined

For n = 2, d = 4(10 - 2)/(2^2 - 3*2 + 2) = 4(10 - 2)/(4 - 6 + 2) = 4(8)/0 = undefined

For n = 3, d = 4(10 - 3)/(3^2 - 3*3 + 2) = 4(10 - 3)/(9 - 9 + 2) = 4(7)/2 = 14

For n = 4, d = 4(10 - 4)/(4^2 - 3*4 + 2) = 4(10 - 4)/(16 - 12 + 2) = 4(6)/6 = 4

For n = 5, d = 4(10 - 5)/(5^2 - 3*5 + 2) = 4(10 - 5)/(25 - 15 + 2) = 4(5)/12 = 10/3 = 3.33 (not an integer)

From the calculations, we can see that the snail spent 4 days on the entire journey.

Answer

The snail spent 4 days on the entire journey.

Explanation

To solve the problem, we set up two equations based on the given information and solved them simultaneously. The equations were derived from the fact that the snail crawled a total of 8 meters on the first and last days and that the total distance crawled was equal to the distance between the trees. By solving the equations, we found that the snail spent 4 days on the entire journey.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос