
Винни Пух,ослик Иа и сова вместе весят 180 кг, Пятачок, Винни Пух и сова вместе весят 155 кг, ослик
Иа, Винни Пух и Пятачок вместе весят 225 кг, ослик Иа, сова и Пятачок вместе весят 130 кг. Сколько весит сова?

Ответы на вопрос

Решение: Пусть весят:
Пух =x
Иа=y
Сова=z
Пяточек=a
Тогда:
x+y+z=180 (1)
a+x+z=155 (2)
y+x+a=225 (3)
y+z+a=130 (4)
Вычтем из уравнения 3 ур. 2 получим: y-z=70 y=70-z
Вычтем из уравнения 3 ур. 4 получим: x-z=95 x=95+z
Подставим в уравнение 1: 95+z+70-z+z=180
z=15






Problem Analysis
We are given the weights of three characters: Winnie the Pooh, Eeyore, and Owl. We need to determine the weight of Owl.Solution
Let's assign variables to the weights of Winnie the Pooh, Eeyore, and Owl: - Let W be the weight of Winnie the Pooh. - Let E be the weight of Eeyore. - Let O be the weight of Owl.We are given the following information: 1. Winnie the Pooh, Eeyore, and Owl together weigh 180 kg. 2. Winnie the Pooh, Owl, and Owl together weigh 155 kg. 3. Eeyore, Winnie the Pooh, and Owl together weigh 225 kg. 4. Eeyore, Owl, and Owl together weigh 130 kg.
We can set up a system of equations based on this information: 1. W + E + O = 180 (Equation 1) 2. W + O + O = 155 (Equation 2) 3. E + W + O = 225 (Equation 3) 4. E + O + O = 130 (Equation 4)
To solve this system of equations, we can use substitution or elimination. Let's use elimination to solve for the weight of Owl.
Subtracting Equation 2 from Equation 3, we get: (Equation 3) - (Equation 2): E + W + O - (W + O + O) = 225 - 155 Simplifying, we have: E - O = 70 (Equation 5)
Subtracting Equation 4 from Equation 1, we get: (Equation 1) - (Equation 4): W + E + O - (E + O + O) = 180 - 130 Simplifying, we have: W - O = 50 (Equation 6)
Now we have a system of two equations: - Equation 5: E - O = 70 - Equation 6: W - O = 50
We can solve this system of equations to find the values of E and W.
Calculation
To solve the system of equations, we can add Equation 5 and Equation 6: (Equation 5) + (Equation 6): (E - O) + (W - O) = 70 + 50 Simplifying, we have: E + W - 2O = 120 (Equation 7)Now we have a new equation: - Equation 7: E + W - 2O = 120
We can rearrange Equation 7 to solve for O: 2O = E + W - 120 O = (E + W - 120) / 2
Now we can substitute the given values of E and W into this equation to find the weight of Owl.
Answer
To find the weight of Owl, we need to substitute the given values of E and W into the equation O = (E + W - 120) / 2.However, we don't have the specific values of E and W. Therefore, we cannot determine the weight of Owl with the given information.
Please provide the specific weights of Winnie the Pooh and Eeyore so that we can calculate the weight of Owl.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili