
В мешке лежат 10 синих шаров и 12 красных шаров. Маша наугад вытаскивает N шаров. При каком
наименьшем N Маша гарантированно из вытащенных шаром может отдать младшей сестре один шар одного цвета и два шара другого цвета

Ответы на вопрос

ответ:3 шара



Minimum Number of Balls to Guarantee Giving One Ball of Each Color to Younger Sister
To guarantee that Masha can give her younger sister one ball of each color and two balls of another color, we can use the concept of the Pigeonhole Principle. This principle states that if N items are put into M containers, with N > M, then at least one container must contain more than one item.
In this case, the "containers" are the two colors (blue and red), and the "items" are the balls Masha draws. We want to find the minimum number of balls (N) Masha must draw to guarantee that she can give her younger sister one ball of each color and two balls of another color.
Using the Pigeonhole Principle, the minimum number of balls (N) Masha must draw is 4.
Here's how we can guarantee this: - Masha draws 3 balls, which could be all of the same color (either blue or red). - Then, no matter what the color of the fourth ball is, she will have at least two balls of one color and one ball of the other color, allowing her to give her younger sister one ball of each color and two balls of another color.
This ensures that Masha can always give her younger sister one ball of each color and two balls of another color, regardless of the specific colors she draws.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili