Вопрос задан 27.02.2019 в 15:12. Предмет Математика. Спрашивает Коваль Эгор.

Какова длина стороны квадрата ,если его периметр 32см?Чему будет равна площадь квадрата,если его

сторону уменьшить на 2 см?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ершова Диана.

Р=32см

а-?

а=Р/4=32/4=8

8-2=6

S=a*b=6*6=36 см2

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте обозначим длину стороны квадрата через \( a \). Периметр квадрата выражается как сумма длин всех его сторон:

\[ \text{Периметр} = 4a \]

В данном случае периметр равен 32 см, поэтому:

\[ 4a = 32 \]

Теперь найдем значение длины стороны \( a \):

\[ a = \frac{32}{4} \]

\[ a = 8 \, \text{см} \]

Таким образом, длина стороны квадрата равна 8 см.

Теперь, если уменьшить каждую сторону на 2 см, новая длина стороны будет \( a - 2 \). Таким образом, новая сторона равна \( 8 - 2 = 6 \) см.

Площадь квадрата вычисляется по формуле:

\[ \text{Площадь} = a \times a \]

Для исходного квадрата:

\[ \text{Площадь} = 8 \, \text{см} \times 8 \, \text{см} = 64 \, \text{см}^2 \]

Для квадрата с уменьшенной стороной:

\[ \text{Новая площадь} = 6 \, \text{см} \times 6 \, \text{см} = 36 \, \text{см}^2 \]

Таким образом, если уменьшить сторону квадрата на 2 см, его площадь уменьшится с 64 см² до 36 см².

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос