Вопрос задан 27.02.2019 в 01:32. Предмет Математика. Спрашивает Сараев Владимир.

Найти синус большего острого угла прямоугольного треугольника, если радиус окружности , описанной

около треугольника, в 2,5 раза больше радиуса вписанной окружности
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Овсетов Салих.
Радиус вписанной окружности для прямоугольного треугольника
r = \frac{a + b - c}{2}
Радиус описанной окружности
R = \frac{c}{2}
Из условия 
 \frac{R}{r} = 2.5 или \frac{c}{a+b-c}

a+b= \frac{c}{2.5} + c
Возведем в квадрат обе стороны
a^2 + b^2 + 2ab = \frac{49}{25}c^2
2ab = 4S = \frac{24}{25}c^2   =>   S = \frac{6}{25}c^2
Выразим катеты через гипотенузу и углами
a = csin \alpha\\ b = csin \beta
Теорема Пифагора
c^2 = a^2 + b^2 = c^2sin^2 \alpha  + c^2sin^2 \beta
Получается следующее     sin^2 \alpha + sin^2 \beta  = 1
Теперь найдем произведение углов с помощью формулы для нахождения площади
\frac{acsin \alpha }{2} или  \frac{c^2sin \beta sin \alpha }{2}

В начале мы выразили площадь через гипотенузу
\frac{6}{25}c^2 = \frac{c^2sin \alpha sin \beta}{2}  
sin \alpha sin \beta = \frac{12}{25}

Теперь из выражения  sin^2 \alpha  + sin^2 \beta  = 1 получаем следующее  
(sin \alpha  + sin \beta )^2 - 2sin \alpha sin \beta = 1 

Подставляем 
(sin \alpha + sin \beta )^2 = \frac{49}{25}\\ sin \alpha + sin \beta = 1.4
Теперь осталось найти углы
sin \alpha  = 1.4 - sin \beta
sin \alpha sin \beta = 1.4sin \beta - sin^2 \beta  = \frac{12}{25} = 0.48
sin^2 \beta - 1.4sin \beta + 0.48 = 0
sin \beta  = 0.6
sin \alpha = 0.8
Так в промежутке от 0  до 90 синус возрастает то  sin \alpha = 0.8
будет наибольшим острым углом в градусах будет приблизительно 53
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы найти синус большего острого угла прямоугольного треугольника, нам потребуется некоторая информация о треугольнике.

Пусть радиус описанной около треугольника окружности равен R, а радиус вписанной окружности равен r.

Известно, что радиус описанной около треугольника окружности в 2,5 раза больше радиуса вписанной окружности, то есть R = 2,5r.

Также известно, что треугольник является прямоугольным, поэтому у него есть прямой угол, равный 90 градусов.

В прямоугольном треугольнике всегда сумма всех углов равна

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос