
Из пункта А в пункт В, расстояние между которыми 200км, одновременно выезжают автомобиль и автобус.
Скорость автомобиля на 60% больше скорости автобуса. Во время пути автомобиль делает получасовую остановку, но, несмотря на это, прибывает в пункт В на час раньше автобуса. С какой скоростью ехал автомобиль?Решите задачу, подробно напишите решение.

Ответы на вопрос

Скорость автомобиля x км/ч, что составляет 100%+60% = 160% от скорости автобуса. Тогда скорость автобуса
160% = x км/ч
100% = Vавт
Vавт = 100*x:160 = 0,625*x.
Автомобиль потратил на весь путь 200:x часов, автобус 200:0,625x, что на 1,5 часа больше (автомобиль делал получасовую остановку и прибыл на 1 час раньше). То есть
Скорость автомобиля 80 км/ч.



Problem Analysis
We are given that a car and a bus start simultaneously from point A and travel a distance of 200 km to reach point B. The car's speed is 60% faster than the bus's speed. The car makes a 30-minute stop during the journey but still arrives at point B one hour earlier than the bus. We need to determine the speed of the car.Solution
Let's assume the speed of the bus is x km/h. Therefore, the speed of the car is 1.6x km/h (60% faster than the bus).To find the speed of the car, we can use the formula:
Speed = Distance / Time
We know that the distance is 200 km. Let's calculate the time taken by the bus and the car to travel this distance.
The time taken by the bus is given by:
Time taken by bus = Distance / Speed of bus
The time taken by the car is given by:
Time taken by car = Distance / Speed of car
We also know that the car makes a 30-minute (0.5 hours) stop during the journey. Therefore, the total time taken by the car is the sum of the time taken to travel the distance and the stoppage time:
Total time taken by car = Time taken by car + Stoppage time
Given that the car arrives at point B one hour earlier than the bus, we can write the equation:
Total time taken by car = Time taken by bus - 1 hour
Substituting the values, we get:
(Distance / Speed of car) + Stoppage time = (Distance / Speed of bus) - 1 hour
Simplifying the equation, we have:
(200 / (1.6x)) + 0.5 = (200 / x) - 1
Let's solve this equation to find the value of x.
Calculation
Let's solve the equation:(200 / (1.6x)) + 0.5 = (200 / x) - 1
Multiplying both sides of the equation by (1.6x) to eliminate the denominators, we get:
200 + 0.8x = 320 - 1.6x
Adding 1.6x to both sides and subtracting 200 from both sides, we get:
2.4x = 120
Dividing both sides by 2.4, we get:
x = 50
Therefore, the speed of the bus is 50 km/h.
Since the speed of the car is 60% faster than the bus's speed, the speed of the car is:
Speed of car = 1.6 * 50 = 80 km/h
Answer
The car was traveling at a speed of 80 km/h.

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili